ﻻ يوجد ملخص باللغة العربية
Anisotropic displacement parameters (ADPs) are commonly used in crystallography, chemistry and related fields to describe and quantify thermal motion of atoms. Within the very recent years, these ADPs have become predictable by lattice dynamics in combination with first-principles theory. Here, we study four very different molecular crystals, namely urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene, by first-principles theory to assess the quality of ADPs calculated in the quasi-harmonic approximation. In addition, we predict both thermal expansion and thermal motion within the quasi-harmonic approximation and compare the predictions with experimental data. Very reliable ADPs are calculated within the quasi-harmonic approximation for all four cases up to at least 200 K, and they turn out to be in better agreement with experiment than the harmonic ones. In one particular case, ADPs can even reliably be predicted up to room temperature. Our results also hint at the importance of normal-mode anharmonicity in the calculation of ADPs.
Thermal properties of solid-state materials are a fundamental topic of study with important practical implications. For example, anisotropic displacement parameters (ADPs) are routinely used in physics, chemistry, and crystallography to quantify the
Some anisotropy in both mechanical and thermodynamical properties of bismuth is expected. A combination of density functional theory total energy calculations and density functional perturbation theory in the local density approximation is used to co
Recent measurements of an unusual high thermal conductivity of around 1000 W m-1 K-1 at room temperature in cubic boron arsenide (BAs) confirm predictions from theory and suggest potential applications of this semiconductor compound for thermal manag
MnWO4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order.We have conducted therm
An ultralow lattice thermal conductivity of 0.14 W$cdot$ m$^{-1} cdot$ K$^{-1}$ along the $vec b$ axis of As$_2$Se$_3$ single crystals was obtained at 300 K by first-principles calculations involving the density functional theory and the resolution o