ﻻ يوجد ملخص باللغة العربية
The observation of micron size spin relaxation makes graphene a promising material for applications in spintronics requiring long distance spin communication. However, spin dependent scatterings at the contact/graphene interfaces affect the spin injection efficiencies and hence prevent the material from achieving its full potential. While this major issue could be eliminated by nondestructive direct optical spin injection schemes, graphenes intrinsically low spin orbit coupling strength and optical absorption place an obstacle in their realization. We overcome this challenge by creating sharp artificial interfaces between graphene and WSe2 monolayers. Application of a circularly polarized light activates the spin polarized charge carriers in the WSe2 layer due to its spin coupled valley selective absorption. These carriers diffuse into the superjacent graphene layer, transport over a 3.5 um distance, and are finally detected electrically using BN/Co contacts in a non local geometry. Polarization dependent measurements confirm the spin origin of the non local signal.
Van der Waals heterostructures composed of multiple few layer crystals allow the engineering of novel materials with predefined properties. As an example, coupling graphene weakly to materials with large spin orbit coupling (SOC) allows to engineer a
Unlike the electrical conductance that can be widely modulated within the same material even in deep nanoscale devices, tuning the thermal conductance within a single material system or nanostructure is extremely challenging and requires a large-scal
We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T_c, can reach several Kelvins at the experimentally accessible ra
One of the most fundamental forms of magnon-phonon interaction is an intrinsic property of magnetic materials, the magnetoelastic coupling. This particular form of interaction has been the basis for describing magnetic materials and their strain rela
In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron-phonon interactions occur primarily within layers