ﻻ يوجد ملخص باللغة العربية
We show that partial transposition for pure and mixed two-particle states in a discrete $N$-dimensional Hilbert space is equivalent to a change in sign of a momentum-like variable of one of the particles in the Wigner function for the state. This generalizes a result obtained for continuous-variable systems to the discrete-variable system case. We show that, in principle, quantum mechanics allows measuring the expectation value of an observable in a partially transposed state, in spite of the fact that the latter may not be a physical state. We illustrate this result with the example of an isotropic state, which is dependent on a parameter $r$, and an operator whose variance becomes negative for the partially transposed state for certain values of $r$; for such $r$, the original states are entangled.
We first show that partial transposition for pure and mixed two-particle states in a discrete $N$-dimensional Hilbert space is equivalent to a change in sign of the momentum of one of the particles in the Wigner function for the state. We then show t
We study the Weyl-Wigner transform in the case of discrete variables defined in a Hilbert space of finite prime-number dimensionality $N$. We define a family of Weyl-Wigner transforms as function of a phase parameter. We show that it is only for a sp
Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefi
A continuous-variable Bell inequality, valid for an arbitrary number of observers measuring observables with an arbitrary number of outcomes, was recently introduced in [Cavalcanti emph{et al.}, Phys. Rev. Lett. {bf 99}, 210405 (2007)]. We prove that
A quantum computing system is typically represented by a set of non-interacting (local) two-state systems - qubits. Many physical systems can naturally have more accessible states, both local and non-local. We show that the resulting non-local networ