This document describes a code to perform parameter estimation and model selection in targeted searches for continuous gravitational waves from known pulsars using data from ground-based gravitational wave detectors. We describe the general workings of the code and characterise it on simulated data containing both noise and simulated signals. We also show how it performs compared to a previous MCMC and grid-based approach to signal parameter estimation. Details how to run the code in a variety of cases are provided in Appendix A.
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst and a kilonova
, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein clouds surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches discussed.
Wide parameter space searches for long lived continuous gravitational wave signals are computationally limited. It is therefore critically important that available computational resources are used rationally. In this paper we consider directed search
es, i.e. targets for which the sky position is known accurately but the frequency and spindown parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spindown should we search? Finally, what is the optimal search set-up that we should use? In this paper we present a general framework that allows to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.
We present a new veto procedure to distinguish between continuous gravitational wave (CW) signals and the detector artifacts that can mimic their behavior. The veto procedure exploits the fact that a long-lasting coherent disturbance is less likely t
han a real signal to exhibit a Doppler modulation of astrophysical origin. Therefore, in the presence of an outlier from a search, we perform a multi-step search around the frequency of the outlier with the Doppler modulation turned off (DM-off), and compare these results with the results from the original (DM-on) search. If the results from the DM-off search are more significant than those from the DM-on search, the outlier is most likely due to an artifact rather than a signal. We tune the veto procedure so that it has a very low false dismissal rate. With this veto, we are able to identify as coherent disturbances >99.9% of the 6349 candidates from the recent all-sky low-frequency Einstein@Home search on the data from the Advanced LIGO O1 observing run [1]. We present the details of each identified disturbance in the Appendix.
In hierarchical searches for continuous gravitational waves, clustering of candidates is an important postprocessing step because it reduces the number of noise candidates that are followed-up at successive stages [1][7][12]. Previous clustering proc
edures bundled together nearby candidates ascribing them to the same root cause (be it a signal or a disturbance), based on a predefined cluster volume. In this paper, we present a procedure that adapts the cluster volume to the data itself and checks for consistency of such volume with what is expected from a signal. This significantly improves the noise rejection capabilities at fixed detection threshold, and at fixed computing resources for the follow-up stages, this results in an overall more sensitive search. This new procedure was employed in the first Einstein@Home search on data from the first science run of the advanced LIGO detectors (O1) [11].
We conduct searches for continuous gravitational waves from seven pulsars, that have not been targeted in continuous wave searches of Advanced LIGO data before. We target emission at exactly twice the rotation frequency of the pulsars and in a small
band around such frequency. The former search assumes that the gravitational wave quadrupole is changing phase-locked with the rotation of the pulsar. The search over a range of frequencies allows for differential rotation between the component emitting the radio signal and the component emitting the gravitational waves, for example the crust or magnetosphere versus the core. Timing solutions derived from the Arecibo 327-MHz Drift-Scan Pulsar Survey (AO327) observations are used. No evidence of a signal is found and upper limits are set on the gravitational wave amplitude. For one of the pulsars we probe gravitational wave intrinsic amplitudes just a factor of 3.8 higher than the spin-down limit, assuming a canonical moment of inertia of $10^{38}$ kg m$^2$. Our tightest ellipticity is $1.7 times 10^{-8}$, which is a value well within the range of what a neutron star crust could support.
Matthew Pitkin
,Maximiliano Isi
,John Veitch
.
(2017)
.
"A nested sampling code for targeted searches for continuous gravitational waves from pulsars"
.
Matthew Pitkin
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا