ترغب بنشر مسار تعليمي؟ اضغط هنا

Plain $s$-wave superconductivity near the magnetic criticality: Enhancement of attractive electron-boson coupling vertex corrections

106   0   0.0 ( 0 )
 نشر من قبل Hiroshi Kontani
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments revealed that the plain $s$-wave state without any sign-reversal emerges in various metals near the magnetic criticality. To understand this counter-intuitive phenomenon, we study the gap equation for the multiorbital Hubbard-Holstein model, by analyzing the vertex correction (VC) due to the higher-order electron-correlation effects. We find that the phonon-mediated orbital fluctuations are magnified by the VC for the susceptibility ($chi$-VC). In addition, the charge-channel attractive interaction is enlarged by the VC for the coupling-constant ($U$-VC), which is significant when the interaction has prominent $q$-dependences so the Migdal theorem fails. Due to both $chi$-VC and $U$-VC, the plain $s$-wave state is caused by the small electron-phonon interaction near the magnetic criticality against the repulsive Coulomb interaction. We find that the direct Coulomb repulsion for the plain $s$-wave Cooper pair is strongly reduced by the multiorbital screening effect.



قيم البحث

اقرأ أيضاً

569 - F. C. Chen , X. Luo , R. C. Xiao 2015
Two-dimensional (2D) transition-metal dichalcogenide (TMDs) MoTe2 has attracted much attention due to its predicted Weyl semimetal (WSM) state and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that the superconductiv ity in MoTe2 single crystal can be much enhanced by the partial substitution of the Te ions by the S ones. The maximum of the superconducting temperature TC of MoTe1.8S0.2 single crystal is about 1.3 K. Compared with the parent MoTe2 single crystal (TC=0.1 K), nearly 13-fold in TC is improved in MoTe1.8S0.2 one. The superconductivity has been investigated by the resistivity and magnetization measurements. MoTe2-xSx single crystals belong to weak coupling superconductors and the improvement of the superconductivity may be related to the enhanced electron-phonon coupling induced by the S-ion substitution. A dome-shape superconducting phase diagram is obtained in the S-doped MoTe2 single crystals. MoTe2-xSx materials may provide a new platform for our understanding of superconductivity phenomena and topological physics in TMDs.
We report a high-pressure single crystal study of the superconducting ferromagnet UCoGe. Ac-susceptibility and resistivity measurements under pressures up to 2.2 GPa show ferromagnetism is smoothly depressed and vanishes at a critical pressure $p_c = 1.4$ GPa. Near the ferromagnetic critical point superconductivity is enhanced. Upper-critical field measurements under pressure show $B_{c2}(0)$ attains remarkably large values, which provides solid evidence for spin-triplet superconductivity over the whole pressure range. The obtained $p-T$ phase diagram reveals superconductivity is closely connected to a ferromagnetic quantum critical point hidden under the superconducting `dome.
We present a comprehensive study of the low-temperature heat capacity and thermal expansion of single crystals of the hole-doped Ba1-xKxFe2As2 series (0<x<1) and the end-members RbFe2As2 and CsFe2As2. A large increase of the Sommerfeld coefficient is observed with both decreasing band filling and isovalent substitution (K, Rb, Cs) revealing a strong enhancement of electron correlations and the possible proximity of these materials to a Mott insulator. This trend is well reproduced theoretically by our Density-Functional Theory + Slave-Spin (DFT+SS) calculations, confirming that 122-iron pnictides are effectively Hund metals, in which sizable Hunds coupling and orbital selectivity are the key ingredients for tuning correlations. We also find direct evidence for the existence of a coherence-incoherence crossover between a low-temperature heavy Fermi liquid and a highly incoherent high-temperature regime similar to heavy fermion systems. In the superconducting state, clear signatures of multiband superconductivity are observed with no evidence for nodes in the energy gaps, ruling out the existence of a doping-induced change of symmetry (from s to d-wave). We argue that the disappearance of the electron band in the range 0.4<x<1.0 is accompanied by a strong-to-weak coupling crossover and that this shallow band remains involved in the superconducting pairing, although its contribution to the normal state fades away. Differences between hole- and electron-doped BaFe2As2 series are emphasized and discussed in terms of strong pair breaking by potential scatterers beyond the Born limit.
To assess electron correlation and electron-phonon coupling in the recently discovered beta-pyrochlores KOs2O6 and RbOs2O6, we have performed specific heat measurements in magnetic fields up to 14 T. We present data from high quality single crystalli ne KOs2O6, showing that KOs2O6 is a strong coupling superconductor with a coupling parameter lambda_ep approx 1.0 to 1.6 (RbOs2O6: lambda_ep approx 1). The estimated Sommerfeld coefficient of KOs2O6, gamma=76 to 110 mJ/(mol K^2), is twice that of RbOs2O6 [gamma=44 mJ/(mol K^2)]. Using strong-coupling corrections, we extract useful thermodynamic parameters of KOs2O6. Quantifying lambda_ep allows us to determine the mass enhancement over the calculated band electronic density of states. A significant contribution in addition to the electron-phonon term of lambda_c=1.7 to 4.3 is deduced. In an effort to understand the origin of the enhancement mechanism, we also investigate an unusual energetically low-lying phonon. There are three phonon modes per RbOs2O6, suggestive of the phonon source being the rattling motion of the alkali ion. This dynamic instability of the alkali ions causes large scattering of the charge carriers which shows up in an unusual temperature dependence of the electrical resistivity.
Unconventional superconductors are of high interest due to their rich physics, a topical example being topological edge-states associated with $p$-wave superconductivity. A practical obstacle in studying such systems is the very low critical temperat ure $T_text{c}$ that is required to realize a $p$-wave superconducting phase in a material. We predict that the $T_text{c}$ of an intrinsic $p$-wave superconductor can be significantly enhanced by coupling it via an atomically thin ferromagnetic layer (F) to a conventional $s$-wave or a $d$-wave superconductor with a higher critical temperature. We show that this $T_text{c}$-boost is tunable via the direction of the magnetization in F. Moreover, we show that the enhancement in $T_text{c}$ can also be achieved using the Zeeman-effect of an external magnetic field. Our findings provide a way to increase $T_text{c}$ in $p$-wave superconductors in a controllable way and make the exotic physics associated with such materials more easily accessible experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا