Magnetometry via spin-mechanical coupling in levitated optomechanics


الملخص بالإنكليزية

We analyze magnetometry using an optically levitated nanodiamond. We consider a configuration where a magnetic field gradient couples the mechanical oscillation of the diamond with its spin degree of freedom provided by a Nitrogen vacancy center. First, we investigate measurement of the position spectrum of the mechanical oscillator. We find that conditions of ultrahigh vacuum and feedback cooling allow a magnetic field gradient sensitivity of 1 $mu$Tm$^{-1}$/$sqrt{mbox{Hz}}$. At high pressure and room temperature, this sensitivity degrades and can attain a value of the order of 100 $m$Tm$^{-1}$/$sqrt{mbox{Hz}}$. Subsequently, we characterize the magnetic field gradient sensitivity obtainable by maneuvering the spin degrees of freedom using Ramsey interferometry. We find that this technique can offer photon-shot noise and spin-projection noise limited magnetic field gradient sensitivity of 100 $mu$Tm$^{-1}$/$sqrt{mbox{Hz}}$. We conclude that this hybrid levitated nanomechanical magnetometer provides a favorable and versatile platform for sensing applications.

تحميل البحث