ترغب بنشر مسار تعليمي؟ اضغط هنا

CaloCube: a novel calorimeter for high-energy cosmic rays in space

189   0   0.0 ( 0 )
 نشر من قبل Paolo Walter Cattaneo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to extend the direct observation of high-energy cosmic rays up to the PeV region, highly performing calorimeters with large geometrical acceptance and high energy resolution are required. Within the constraint of the total mass of the apparatus, crucial for a space mission, the calorimeters must be optimized with respect to their geometrical acceptance, granularity and absorption depth. CaloCube is a homogeneous calorimeter with cubic geometry, to maximise the acceptance being sensitive to particles from every direction in space; granularity is obtained by relying on small cubic scintillating crystals as active elements. Different scintillating materials have been studied. The crystal sizes and spacing among them have been optimized with respect to the energy resolution. A prototype, based on CsI(Tl) cubic crystals, has been constructed and tested with particle beams. Some results of tests with different beams at CERN are presented.



قيم البحث

اقرأ أيضاً

An imaging calorimeter has been designed and is being built for the PAMELA satellite-borne experiment. The physics goals of the experiment are the measurement of the flux of antiprotons, positrons and light isotopes in the cosmic radiation. The cal orimeter is designed to perform a precise measurement of the total energy deposited, to reconstruct the spatial development of the showers (both in the longitudinal and in the transverse directions), and to measure the energy distribution along the shower itself. From this information, the calorimeter will identify antiprotons from a electron background and positrons in a background of protons with an efficiency of about 95% and a rejection power better than 10^-4. Furthermore, a self-trigger system has been implemented with the calorimeter that will be employed to measure high-energy (from about 300 GeV to more than 1 TeV) electrons. The instrument is composed of 22 layers of tungsten, each sandwiched between two views of silicon strip detectors (X and Y). The signals are read out by a custom VLSI front-end chip, the CR1.4P, specifically designed for the PAMELA calorimeter, with a dynamic range of 7.14 pC or 1400 mip (minimum ionizing particle). We report on the simulated performance and prototype design.
A multi-messenger, space-based cosmic ray detector for gamma rays and charged particles poses several design challenges due to the different instrumental requirements for the two kind of particles. Gamma-ray detection requires layers of high Z materi als for photon conversion and a tracking device with a long lever arm to achieve the necessary angular resolution to separate point sources; on the contrary, charge measurements for atomic nuclei requires a thin detector in order to avoid unwanted fragmentation, and a shallow instrument so to maximize the geometric factor. In this paper, a novel tracking approach for gamma rays which tries to reconcile these two conflicting requirements is presented. The proposal is based on the Tracker-In-Calorimeter (TIC) design that relies on a highly-segmented calorimeter to track the incident gamma ray by sampling the lateral development of the electromagnetic shower at different depths. The effectiveness of this approach has been studied with Monte Carlo simulations and has been validated with test beam data of a detector prototype.
This paper presents results obtained with the combined CALICE Scintillator Electromagnetic Calorimeter, Analogue Hadronic Calorimeter and Tail Catcher & Muon Tracker, three high granularity scintillator-SiPM calorimeter prototypes. The response of th e system to pions with momenta between 4 GeV/c and 32 GeV/c is analysed, including the energy response, resolution, and longitudinal shower profiles. The results of a software compensation technique based on weighting according to hit energy are compared to those of a standard linear energy reconstruction. The results are compared to predictions of the GEANT4 physics lists QGSP_BERT_HP and FTFP_BERT_HP.
The AGILE (Advanced enerGetic Ion eLectron tElescope) project focuses on the development of a compact low-cost space-based instrument to measure the intensities of charged particles and ions in space. Using multiple layers of fast silicon sensors and custom front-end electronics, the instrument is designed for real-time particle identification of a large variety of elements from H to Fe and spanning energies from 1 to 100 MeV per nucleon. The robust method proposed in this work uses key defining features of electronic signals generated by charged particles (ions) traveling through silicon layers to reliably identify and characterize particles in situ. AGILE will use this real-time pulse shape discrimination technique for the first time in space based instrumentation.
We performed a Geant4 simulation study on showers generated by electrons and hadrons in a large homogeneous calorimeter. We found that the energy deposit can be expressed as a linear function of the track length. The line does not pass through the or igin, and the energy deposit at the intercept is proportional to the incident energy. Moreover, for both electrons and hadrons, the slope of the line is independent of the incident energy. The energy resolution of the calorimeter can be expressed in terms of the distribution around the correlation line, which we found to be very good at about $ 19% / sqrt{E(rm{GeV})}$ for pions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا