ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of NuSTAR and Suzaku observations of Cyg X-1 in the hard state: evidence for a truncated disc geometry

61   0   0.0 ( 0 )
 نشر من قبل Andrzej A. Zdziarski
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The geometry of the accretion flow in black-hole X-ray binaries in the hard state, in particular the position of the disc inner edge, has been a subject of intense debate in recent years. We address this issue by performing a spectral study of simultaneous observations of Cyg X-1 in the hard state by NuSTAR and Suzaku. The same data were analysed before, and modelled by a lamppost containing hybrid electrons and located very close to the horizon, which emission was incident on a surrounding disc extending almost to the innermost stable circular orbit. We re-analyse the incident continuum model and show that it suffers from the lack of physical self-consistency. Still, the good fit to the data provided by this model indicates that the real continuum has a similar shape. We find it features a strong soft X-ray excess below a few keV, which we model as a soft thermal-Comptonization component, in addition to the main hard thermal-Compton component. This continuum model with reflection of both components yields the overall lowest $chi^2$ and has a geometry with a hot inner accretion flow and a disc truncated at $simeq$13--20 gravitational radii. On the other hand, we have also found spectral solution with a lamppost at a large height and a disc that can extend to the innnermost stable circular orbit, though somewhat statistically worse. Overall, we find the fitted truncation radius depends on the assumed continuum and geometry.



قيم البحث

اقرأ أيضاً

We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, which enables us to study th e reflection and broad-band spectra in unprecedented detail. We confirm that the iron line cannot be fit with a combination of narrow lines and absorption features, and instead requires a relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use the reflection models of Garcia et al. (2014) to simultaneously measure the black hole spin, disk inner radius, and coronal height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring, indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low source height, and rule out truncation to greater than three gravitational radii at the 3{sigma} confidence level. In addition, we find that the line profile has not changed greatly in the switch from soft to hard states, and that the differences are consistent with changes in the underlying reflection spectrum rather than the relativistic blurring. We find that the blurring parameters are consistent when fitting either just the iron line or the entire broad-band spectrum, which is well modelled with a Comptonized continuum plus reflection model.
168 - Michael A. Nowak 2008
We present highlights from a series of four simultaneous Suzaku/RXTE observations of the black hole candidate Cyg X-1. We briefly summarize several key results from our decade long RXTE monitoring campaign. We then comment on challenges of analyzing the Suzaku data, i.e., improving the aspect correction beyond that of the existing tools, and quantitatively assessing pileup. All of our Suzaku observations (one, by design) occurred at or very near orbital phase 0 (superior conjunction), and hence show evolution in color-color diagrams due to X-ray absorption by material from the wind of the secondary. We present simple partial absorption models for this evolution. We then compare the Suzaku and RXTE data, and explicitly divide the Fe line region into narrow and broad components. Both are required for the Suzaku data, and are seen to be consistent with the RXTE data. These Suzaku observations occurred near historically hard, low flux states. We present fits of the broad band spectra with a simple phenomenological broken powerlaw model, as well as a more physically motivated Comptonization model. Whereas the former class of models described nearly all of the RXTE campaign better than any physical model, here the latter model is slightly more successful. The Comptonization model, however, exhibits little evidence for a soft disk component, which formally corresponds to a small, inner disk radius. Whether this is physical, due to unmodeled absorption, or is a calibration issue, remains an open question.
We present the first broadband 0.3-25.0 kev X-ray observations of the bright ultraluminous X-ray source (ULX) Holmberg II X-1, performed by NuSTAR, XMM-Newton and Suzaku in September 2013. The NuSTAR data provide the first observations of Holmberg II X-1 above 10 keV, and reveal a very steep high-energy spectrum, similar to other ULXs observed by NuSTAR to date. These observations further demonstrate that ULXs exhibit spectral states that are not typically seen in Galactic black hole binaries. Comparison with other sources implies that Holmberg II X-1 accretes at a high fraction of its Eddington accretion rate, and possibly exceeds it. The soft X-ray spectrum (E<10 keV) appears to be dominated by two blackbody-like emission components, the hotter of which may be associated with an accretion disk. However, all simple disk models under-predict the NuSTAR data above ~10 keV and require an additional emission component at the highest energies probed, implying the NuSTAR data does not fall away with a Wien spectrum. We investigate physical origins for such an additional high-energy emission component, and favor a scenario in which the excess arises from Compton scattering in a hot corona of electrons with some properties similar to the very-high state seen in Galactic binaries. The observed broadband 0.3-25.0 keV luminosity inferred from these epochs is Lx = (8.1+/-0.1)e39 erg/s, typical for Holmberg II X-1, with the majority of the flux (~90%) emitted below 10 keV.
182 - S. Yamada , H. Negoro , S. Torii 2013
Rapid spectral changes in the hard X-ray on a time scale down to ~0.1 s are studied by applying shot analysis technique to the Suzaku observations of the black hole binary Cygnus X-1, performed on 2008 April 18 during the low/hard state. We successfu lly obtained the shot profiles covering 10--200 keV with the Suzaku HXD-PIN and HXD-GSO detector. It is notable that the 100-200 keV shot profile is acquired for the first time owing to the HXD-GSO detector. The intensity changes in a time-symmetric way, though the hardness does in a time-asymmetric way. When the shot-phase-resolved spectra are quantified with the Compton model, the Compton y-parameter and the electron temperature are found to decrease gradually through the rising phase of the shot, while the optical depth appears to increase. All the parameters return to their time-averaged values immediately within 0.1 s past the shot peak. We have not only confirmed this feature previously found in energies below ~60 keV, but also found that the spectral change is more prominent in energies above ~100 keV, implying the existence of some instant mechanism for direct entropy production. We discuss possible interpretations on the rapid spectral changes in the hard X-ray band.
We study long-term radio/X-ray correlations in Cyg X-1. We find the persistent existence of a compact radio jet in its soft state. This represents a new phenomenon in black-hole binaries, in addition to compact jets in the hard state and episodic eje ctions of ballistic blobs in the intermediate state. While the radio emission in the hard state is strongly correlated with both the soft and hard X-rays, the radio flux in the soft state is not directly correlated with the flux of the dominant disk blackbody in soft X-rays, but instead it is lagged by about a hundred days. We interpret the lag as occurring in the process of advection of the magnetic flux from the donor through the accretion disk. On the other hand, the soft-state radio flux is very tightly correlated with the hard X-ray, 15--50 keV, flux without a measurable lag and at the same rms. This implies that the X-ray emitting disk corona and the soft-state jet are powered by the same process, probably magnetically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا