ﻻ يوجد ملخص باللغة العربية
The ground state entanglement of the system, both in discrete-time and continuous-time cases, is quantified through the linear entropy. The result shows that the entanglement increases as the interaction between the particles increases in both time scales. It is also found that the strength of the harmonic potential affects the formation rate of the entanglement of the system. The different feature of the entanglement between continuous-time and discrete-time scales is that, for discrete-time entanglement, there is a cut-off condition. This condition implies that the system can never be in a maximally entangled state.
In this comprehensive study of Kitaevs abelian models defined on a graph embedded on a closed orientable surface, we provide complete proofs of the topological ground state degeneracy, the absence of local order parameters, compute the entanglement e
We derive explicitly the thermal state of the two coupled harmonic oscillator system when the spring and coupling constants are arbitrarily time-dependent. In particular, we focus on the case of sudden change of frequencies. In this case we compute p
We study a system of qubits that are coupled to each other via only one degree of freedom represented, e.g., by $sigma_z$-operators. We prove that, if by changing the Hamiltonian parameters, a non-degenerate ground state of the system is continuously
We investigate the entanglement for a model of a particle moving in the lattice (many-body system). The interaction between the particle and the lattice is modelled using Hookes law. The Feynman path integral approach is applied to compute the densit
Let ${X_n}$ be a stationary and ergodic time series taking values from a finite or countably infinite set ${cal X}$. Assume that the distribution of the process is otherwise unknown. We propose a sequence of stopping times $lambda_n$ along which we w