ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital superconductivity, defects and pinned nematic fluctuations in the doped iron chalcogenide FeSe$_{0.45}$Te$_{0.55}$

65   0   0.0 ( 0 )
 نشر من قبل Dirk K. Morr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that the differential conductance, $dI/dV$, measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe$_{0.45}$Te$_{0.55}$, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two hole-like Fermi surfaces, and a strongly anisotropic gap on the electron-like Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related $C_2$-symmetry in the Fourier transformed differential conductance.



قيم البحث

اقرأ أيضاً

The engineering of Majorana zero modes in topological superconductors, a new paradigm for the realization of topological quantum computing and topology-based devices, has been hampered by the absence of materials with sufficiently large superconducti ng gaps. Recent experiments, however, have provided enthralling evidence for the existence of topological surface superconductivity in the iron-based superconductor FeSe$_{0.45}$Te$_{0.55}$ possessing a full $s_pm$-wave gap of a few meV. Here, we propose a mechanism for the emergence of topological superconductivity on the surface of FeSe$_{0.45}$Te$_{0.55}$ by demonstrating that the interplay between the $s_pm$-wave symmetry of the superconducting gap, recently observed surface magnetism, and a Rashba spin-orbit interaction gives rise to several topological superconducting phases. Moreover, the proposed mechanism explains a series of experimentally observed hallmarks of topological superconductivity, such as the emergence of Majorana zero modes in the center of vortex cores and at the end of line defects, as well as of chiral Majorana edge modes along certain types of domain walls. We also propose that the spatial distribution of supercurrents near a domain wall is a characteristic signature measurable via a scanning superconducting quantum interference device that can distinguish between chiral Majorana edge modes and trivial in-gap states.
FeSe${}_{0.45}$Te${}_{0.55}$ (FeSeTe) has recently emerged as a promising candidate to host topological superconductivity, with a Dirac surface state and signatures of Majorana bound states in vortex cores. However, correlations strongly renormalize the bands compared to electronic structure calculations, and there is no evidence for the expected bulk band inversion. We present here a comprehensive angle resolved photoemission (ARPES) study of FeSeTe as function of photon energies ranging from 15 - 100 eV. We find that although the top of bulk valence band shows essentially no $k_z$ dispersion, its normalized intensity exhibits a periodic variation with $k_z$. We show, using ARPES selection rules, that the intensity oscillation is a signature of band inversion indicating a change in the parity going from $Gamma$ to Z. Thus we provide the first direct evidence for a topologically non-trivial bulk band structure that supports protected surface states.
We have performed electrical resistivity measurements of a polycrystalline sample of FeSe$_{0.25}$Te$_{0.75}$, which exhibits superconductivity at $T_{rm c} sim 14$ K, in magnetic fields up to 55 T to determine the upper critical field $mu_{0}H_{rm c 2}$. In this compound, very large slopes of $mu_{0}H_{rm c2}$ at the onset, the mid-point, the zero-resistivity temperatures on superconductivity are determined to be -13.7, -10.1, and -6.9 T/K, respectively. The observed $mu_{0}H_{rm c2}(T)$s of this compound are considerably smaller than those expected from the Werthamer-Helfand-Hohenberg model, manifesting the Pauli limiting behavior. These results suggest that this compound has a large Maki parameter, but it is smaller than that calculated for a weak-coupling superconductor, indicating a large superconducting gap of this compound as a strong-coupling superconductor.
170 - Weidong Si , Juan Zhou , Qing Jie 2011
The high upper critical field characteristic of the recently discovered iron-based superconducting chalcogenides opens the possibility of developing a new type of non-oxide high-field superconducting wires. In this work, we utilize a buffered metal t emplate on which we grow a textured FeSe$_{0.5}$Te$_{0.5}$ layer, an approach developed originally for high temperature superconducting coated conductors. These tapes carry high critical current densities (>1$times10^{4}$A/cm$^{2}$) at about 4.2K under magnetic field as high as 25 T, which are nearly isotropic to the field direction. This demonstrates a very promising future for iron chalcogenides for high field applications at liquid helium temperatures. Flux pinning force analysis indicates a point defect pinning mechanism, creating prospects for a straightforward approach to conductor optimization.
149 - J. Li , B. Lei , D. Zhao 2019
The importance of the spin-orbit coupling (SOC) effect in Fe-based superconductors (FeSCs) has recently been under hot debate. Considering the Hunds coupling-induced electronic correlation, the understanding of the role of SOC in FeSCs is not trivial and is still elusive. Here, through a comprehensive study of 77Se and 57Fe nuclear magnetic resonance, a nontrivial SOC effect is revealed in the nematic state of FeSe. First, the orbital-dependent spin susceptibility, determined by the anisotropy of the 57Fe Knight shift, indicates a predominant role from the 3dxy orbital, which suggests the coexistence of local and itinerant spin degrees of freedom (d.o.f.) in the FeSe. Then, we reconfirm that the orbital reconstruction below the nematic transition temperature (Tnem ~ 90 K) happens not only on the 3dxz and 3dyz orbitals but also on the 3dxy orbital, which is beyond a trivial ferro-orbital order picture. Moreover, our results also indicate the development of a coherent coupling between the local and itinerant spin d.o.f. below Tnem, which is ascribed to a Hunds coupling-induced electronic crossover on the 3dxy orbital. Finally, due to a nontrivial SOC effect, sizable in-plane anisotropy of the spin susceptibility emerges in the nematic state, suggesting a spin-orbital-intertwined nematicity rather than simply spin- or orbital-driven nematicity}. The present work not only reveals a nontrivial SOC effect in the nematic state but also sheds light on the mechanism of nematic transition in FeSe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا