Observation of a narrow structure at $Wsim 1.68$ GeV in the excitation functions of some photon- and pion-induced reactions may signal a new narrow isospin-1/2 $N(1685)$ resonance. New data on the $gamma N to pi eta N$ reactions from GRAAL seems to reveal the signals of both $N^+(1685)$ and $N^0(1685)$ resonances.
The production of eta mesons in photon- and hadron-induced reactions has been revisited in view of the recent additions of high-precision data to the world data base. Based on an effective Lagrangian approach, we have performed a combined analysis of
the free and quasi-free gamma N -> eta N, N N -> N N eta, and pi N -> eta N reactions. Considering spin-1/2 and -3/2 resonances, we found that a set of above-threshold resonances {S_{11}, P_{11}, P_{13}}, with fitted mass values of about M_R=1925, 2130, and 2050 MeV, respectively, and the four-star sub-threshold P_{13}(1720) resonance reproduce best all existing data for the eta production processes in the resonance-energy region considered in this work. All three above-threshold resonances found in the present analysis are essential and indispensable for the good quality of the present fits.
The $gamma n to pi^0 n$ differential cross section evaluated for 27 energy bins span the photon-energy range 290-813 MeV (W = 1.195-1.553 GeV) and the pion c.m. polar production angles, ranging from 18 deg to 162 deg, making use of model-dependent nu
clear corrections to extract pi0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the 0-meson production. Our accumulation of 3.6 x 10^6 $gamma n to pi^0 n$ events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes $N^* to gamma n$ at the resonance poles are determined for the first time.
Revised analysis of $Sigma$ beam asymmetry for $eta$ photoproduction on the free proton reveals a resonant structure at $Wsim 1.69$ GeV. Comparison of experimental data with multipole decomposition based on the E429 solution of the SAID partial wav
e analysis and including narrow states, suggests a narrow ($Gamma leq 15$ MeV) resonance. Possible candidates are $P_{11}$, $P_{13}$, or $D_{13}$ resonances. The result is considered in conjunction with the recent evidence for a bump-like structure at $Wsim 1.67 - 1.68$ GeV in quasi-free $eta$ photoproduction on the neutron.
Different interpretations of narrow structures at $Wsim 1.68$ and $Wsim 1.72$ GeV observed in several reactions are discussed. It is questionable whether interference phenomena could explain the whole complex of experimental findings. More probable h
ypotheses would be the existence of one or two narrow resonances $N(1685)$ and $N(1726)$ and/or the sub-threshold virtual $KSigma$ and $omega p$ production (cusps).
The first study of quasi-free Compton scattering on the neutron in the energy range of $E_{gamma}=0.75 - 1.5$ GeV is presented. The data reveals a narrow peak at $Wsim 1.685$ GeV. This result, being considered in conjunction with the recent evidence
for a narrow structure at $Wsim 1.68$GeV in the $eta$ photoproduction on the neutron, suggests the existence of a new nucleon resonance with unusual properties: the mass $Msim 1.685$GeV, the narrow width $Gamma leq 30$MeV, and the much stronger photoexcitation on the neutron than on the proton.
V. Kuznetsov
,F. Mammoliti
,F. Tortorici
.
(2017)
.
"Observation of Narrow $N^+(1685)$ and $N^0(1685)$ Resonances in $gamma N to eta pi N$ Reactions"
.
Viacheslav Kuznetsov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا