ﻻ يوجد ملخص باللغة العربية
The 10 MeV accelerator-driven subcritical system (ADS) Injector-I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The Injector adopted a four vane copper structure RFQ with output energy of 3.2 MeV and a superconducting (SC) section accommodating fourteen b{eta}g=0.12 single spoke cavities, fourteen SC solenoids and fourteen cold BPMs. The ion source was installed since April of 2014, periods of commissioning are regularly scheduled between installation phases of the rest of the injector. Continuous wave (CW) beam was shooting through the injector and 10 MeV CW proton beam with average beam current around 2 mA was obtained recently. This contribution describe the results achieved so far and the difficulties encountered in CW commissioning.
The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and testbed for the development and realization of SwissFEL, the X-ray Free-Electron Laser facility under construction at the
The superconducting solenoid magnet prototype for ADS injection-I had been fabricated in Beijing Qihuan Mechanical and Electric Engineer Company and tested in Haerbin Institute of Technology (HIT) in Nov, 2012. Batch magnet production was processed a
Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the Accelerator Driven Sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sci
The Warm Front End (WFE) of the Proton Improvement Plan II Injector Test at Fermilab has been constructed to its full length. It includes a 15-mA DC, 30-keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT) with a switching dipole magnet, a
The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with