ﻻ يوجد ملخص باللغة العربية
Light Axionic Dark Matter, motivated by string theory, is increasingly favored for the no-WIMP era. Galaxy formation is suppressed below a Jeans scale, of $simeq 10^8 M_odot$ by setting the axion mass to, $m_B sim 10^{-22}$eV, and the large dark cores of dwarf galaxies are explained as solitons on the de-Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency, $omega_B= (2.5{rm , months})^{-1}(m_B/10^{-22}eV)$, would be definitive. By evolving the coupled Schrodinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de-Broglie interference, with a dense soliton core of size $simeq 150pc$, at the Galactic center. The oscillating field pressure induces General Relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals, of $simeq 400nsec/(m_B/10^{-22}eV)$. This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.
We consider a dark matter halo (DMH) of a spherical galaxy as a Bose-Einstein condensate of the ultra-light axions interacting with the baryonic matter. In the mean-field limit, we have derived the integro-differential equation of the Hartree-Fock ty
It is widely accepted that dark matter contributes about a quarter of the critical mass-energy density in our Universe. The nature of dark matter is currently unknown, with the mass of possible constituents spanning nearly one hundred orders of magni
We discuss the theory of pulsar-timing and astrometry probes of a stochastic gravitational-wave background with a recently developed total-angular-momentum (TAM) formalism for cosmological perturbations. We review the formalism, emphasizing in partic
We examine the capability of pulsar timing arrays (PTAs) to detect very small-scale clumps of dark matter (DM), which are a natural outcome of the standard cold dark matter (CDM) paradigm. A clump streaming near the Earth or a pulsar induces an impul
In the present work we study possible time dependent effects in Axion Dark Matter searches employing resonant cavities. We find that the width of the resonance, which depends on the axion mean square velocity in the local frame, will show an annual v