ﻻ يوجد ملخص باللغة العربية
Two weighted selection combining (WSC) schemes are proposed for a differential decode-and-forward relaying system in Rayleigh fading channels. Compared to the conventional selection combining scheme, the decision variable of the relay link is multiplied by a scale factor to combat the error propagation phenomenon. Average bit-error rate (ABER) expressions of the two proposed WSC schemes are derived in closed-form and verified by simulation results. For the second WSC scheme, asymptotic ABER expression and diversity order are derived to gain more insight into this scheme. Moreover, it is demonstrated that both WSC schemes can overcome the extra noise amplification induced by the link adaptive relaying scheme. The first WSC scheme is slightly inferior to the second one, which has a higher complexity. Both proposed WSC schemes outperform the conventional selection combining scheme.
In this paper, a superposition-coded concurrent decode-and-forward (DF) relaying protocol is presented. A specific scenario, where the inter-relay channel is sufficiently strong, is considered. Assuming perfect source-relay transmissions, the propose
In this paper, we adopt the relay selection (RS) protocol proposed by Bletsas, Khisti, Reed and Lippman (2006) with Enhanced Dynamic Decode-and-Forward (EDDF) and network coding (NC) system in a two-hop two-way multi-relay network. All nodes are sing
In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protoc
We study the outage probability of opportunistic relay selection in decode-and-forward relaying with secrecy constraints. We derive the closed-form expression for the outage probability. Based on the analytical result, the asymptotic performance is t
Short message noisy network coding (SNNC) differs from long message noisy network coding (LNNC) in that one transmits many short messages in blocks rather than using one long message with repetitive encoding. Several properties of SNNC are developed.