ﻻ يوجد ملخص باللغة العربية
GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m$^2$. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual beam operation and laser metrology [...]. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase tracking on stars as faint as m$_K$ ~ 10 mag, phase-referenced interferometry of objects fainter than m$_K$ ~ 15 mag with a limiting magnitude of m$_K$ ~ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25 %, and spectro-differential phase and closure phase accuracy better than 0.5{deg}, corresponding to a differential astrometric precision of better than 10 microarcseconds ({mu}as). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 {mu}as when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic Center supermassive black hole and its fast orbiting star S2 for phase referenced dual beam observations and infrared wavefront sensing, the High Mass X-Ray Binary BP Cru and the Active Galactic Nucleus of PDS 456 for few {mu}as spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, {xi} Tel and 24 Cap for high accuracy visibility observations, and {eta} Car for interferometric imaging with GRAVITY.
One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of
Until now, the detailed interpretation of the observed microlensing events has suffered from the fact that the physical parameters of the phenomenon cannot be uniquely determined from the available astronomical measurements, i.e. the photometric ligh
ASTRA (ASTrometric and phase-Referencing Astronomy) is an upgrade to the existing Keck Interferometer which aims at providing new self-phase referencing (high spectral resolution observation of YSOs), dual-field phase referencing (sensitive AGN obser
Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical ma
Visible-light long baseline interferometry holds the promise of advancing a number of important applications in fundamental astronomy, including the direct measurement of the angular diameters and oblateness of stars, and the direct measurement of th