Numerous studies have been carried out to characterize the chemical composition of laboratory analogues of Titan aerosols (tholins), but their molecular composition as well as their structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about this composition, the highly disparate results obtained can be attributed to the analytical conditions used and/or to differences in the nature of the analogues studied. In order to have a better description of Titan tholins molecular composition, we led a systematic analysis of these materials using pyr-GCMS with two major objectives: (i) exploring the analytical parameters to estimate the biases this technique can induce and to find an optimum for analyses allowing the detection of a wide range of compounds and thus a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholins molecular structure. With this aim, we used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were systematically pyrolyzed from 200 to 600{deg}C. The extracted gases were then analyzed by GCMS for their molecular identification.