ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II

80   0   0.0 ( 0 )
 نشر من قبل Filippo Contenta
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Filippo Contenta




اسأل ChatGPT حول البحث

We present a new technique to probe the central dark matter (DM) density profile of galaxies that harnesses both the survival and observed properties of star clusters. As a first application, we apply our method to the `ultra-faint dwarf Eridanus II (Eri II) that has a lone star cluster ~45 pc from its centre. Using a grid of collisional $N$-body simulations, incorporating the effects of stellar evolution, external tides and dynamical friction, we show that a DM core for Eri II naturally reproduces the size and the projected position of its star cluster. By contrast, a dense cusped galaxy requires the cluster to lie implausibly far from the centre of Eri II (>1 kpc), with a high inclination orbit that must be observed at a particular orbital phase. Our results, therefore, favour a dark matter core. This implies that either a cold DM cusp was `heated up at the centre of Eri II by bursty star formation, or we are seeing an evidence for physics beyond cold DM.



قيم البحث

اقرأ أيضاً

Aims. We use stellar line-of-sight velocities to constrain the dark matter-density profile of Eridanus 2, an ultra-faint dwarf galaxy ($M_mathrm{V} = -7.1$, $M_* approx 9 times 10^4,M_odot$). We furthermore derive constraints on fundamental propertie s of self-interacting and fuzzy dark matter scenarios. Methods. We present new observations of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with MUSE on the Very Large Telescope, and determine line-of-sight velocities for stars inside the half-light radius. Combined with literature data, we have 92 stellar tracers out to twice the half-light radius. We constrain models of cold dark matter, self-interacting dark matter, and fuzzy dark matter with these tracers, using CJAM and pyGravSphere for the dynamical analysis. Results. We find substantial evidence for cold dark matter over self-interacting dark matter and weak evidence for fuzzy dark matter over cold dark matter. We find a virial mass $M_{200} sim 10^8,M_odot$ and astrophysical factors $J(alpha_mathrm{c}^J) sim 10^{11},M_odot^2,mathrm{kpc}^{-5}$ and $D(alpha_mathrm{c}^D) sim 10^2$-$10^{2.5},M_odot,mathrm{kpc}^{-2}$. We do not resolve a core ($r_mathrm{c} < 47,mathrm{pc}$, 68-% level) or soliton ($r_mathrm{sol} < 7.2,mathrm{pc}$, 68-% level). These limits are equivalent to an effective self-interaction coefficient $fGamma < 2.2 times 10^{-29},mathrm{cm}^3,mathrm{s}^{-1},mathrm{eV}^{-1},c^2$ and a fuzzy-dark-matter particle mass $m_mathrm{a} > 4.0 times 10^{-20},mathrm{eV},c^{-2}$. The constraint on self-interaction is complementary to those from gamma-ray searches. The constraint on fuzzy-dark-matter particle mass is inconsistent with those obtained for larger dwarf galaxies, suggesting that the flattened density profiles of those galaxies are not caused by fuzzy dark matter. (Abridged)
Self-interacting dark matter (SIDM) has gathered growing attention as a solution to the small scale problems of the collisionless cold dark matter (DM). We investigate the SIDM using stellar kinematics of 23 ultra-faint dwarf (UFD) galaxies with the phenomenological SIDM halo model. The UFDs are DM-dominated and have less active star formation history. Accordingly, they are the ideal objects to test the SIDM, as their halo profiles are least affected by the baryonic feedback processes. We found no UFDs favor non-zero self-interaction and some provide stringent constraints within the simple SIDM modeling. Our result challenges the simple modeling of the SIDM, which urges further investigation of the subhalo dynamical evolution of the SIDM.
In the standard Lambda cold dark matter paradigm, pure dark matter simulations predict dwarf galaxies should inhabit dark matter haloes with a centrally diverging density `cusp. This is in conflict with observations that typically favour a constant d ensity `core. We investigate this `cusp-core problem in `ultra-faint dwarf galaxies simulated as part of the `Engineering Dwarfs at Galaxy formations Edge (EDGE) project. We find, similarly to previous work, that gravitational potential fluctuations within the central region of the simulated dwarfs kinematically heat the dark matter particles, lowering the dwarfs central dark matter density. However, these fluctuations are not exclusively caused by gas inflow/outflow, but also by impulsive heating from minor mergers. We use the genetic modification approach on one of our dwarfs initial conditions to show how a delayed assembly history leads to more late minor mergers and, correspondingly, more dark matter heating. This provides a mechanism by which even ultra-faint dwarfs ($M_* < 10^5,text{M}_{odot}$), in which star formation was fully quenched at high redshift, can have their central dark matter density lowered over time. In contrast, we find that late major mergers can regenerate a central dark matter cusp, if the merging galaxy had sufficiently little star formation. The combination of these effects leads us to predict significant stochasticity in the central dark matter density slopes of the smallest dwarfs, driven by their unique star formation and mass assembly histories.
166 - Timothy D. Brandt 2016
I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of >~5 M_sun as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least ten such galaxies places independent limits on MACHO dark matter of masses >~10 M_sun. Both Eri IIs cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M_sun and half-light radii of 13 pc (for the cluster) and ~30 pc (for the ultra-faint dwarfs). These systems close the ~20--100 M_sun window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ~10$^{-7}$ M_sun up to arbitrarily high masses.
We use the Milky Ways nuclear star cluster (NSC) to test the existence of a dark matter soliton core, as predicted in ultra-light dark matter (ULDM) models. Since the soliton core size is proportional to mDM^{-1}, while the core density grows as mDM^ {2}, the NSC (dominant stellar component within about 3 pc) is sensitive to a specific window in the dark matter particle mass, mDM. We apply a spherical isotropic Jeans model to fit the NSC line-of-sight velocity dispersion data, assuming priors on the Milky Ways supermassive black hole (SMBH) mass taken from the Gravity Collaboration et al. (2020) and stellar density profile taken from Gallego-Cano et al. (2018). We find that the current observational data reject the existence of a soliton core for a single ULDM particle with mass in the range 10^{-20.0} < mDM < 10^{-18.5} eV, assuming that the soliton core structure is not affected by the Milky Ways SMBH. We test our methodology on mock data, confirming that we are sensitive to the same range in ULDM mass as for the real data. Dynamical modelling of a larger region of the Galactic centre, including the nuclear stellar disc, promises tighter constraints over a broader range of mDM. We will consider this in future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا