ترغب بنشر مسار تعليمي؟ اضغط هنا

The breaking of flavor democracy in the quark sector

208   0   0.0 ( 0 )
 نشر من قبل Di Zhang
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The democracy of quark flavors is a well-motivated flavor symmetry, but it must be properly broken in order to explain the observed quark mass spectrum and flavor mixing pattern. We reconstruct the texture of flavor democracy breaking and evaluate its strength in a novel way, by assuming a parallelism between the Q=+2/3 and Q=-1/3 quark sectors and using a nontrivial parametrization of the flavor mixing matrix. Some phenomenological implications of such democratic quark mass matrices, including their variations in the hierarchy basis and their evolution from the electroweak scale to a superhigh-energy scale, are also discussed.



قيم البحث

اقرأ أيضاً

One of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor and measurements and theoretical interpretations of their results have advanced tremendously: apart from masses and quantum numbers of flavor particles, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. Till early 1990s observations of CP violation were confined to neutral $K$ mesons, but since then a large number of CP-violating processes have been studied in detail in neutral $B$ mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of $K, D$, and $B$ mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments, thus a review of the status of quark flavor physics is timely. This report summarizes the results of the current generation of experiments that is about to be completed and it confronts these results with the theoretical understanding of the field.
The flavor democracy hypothesis was introduced in seventies taking in mind three Standard Model (SM) families. Later, this idea was disfavored by the large value of the t-quark mass. In nineties the hypothesis was revisited assuming that extra SM fam ilies exist. According to flavor democracy the fourth SM family should exist and there are serious arguments disfavoring the fifth SM family. The fourth SM family quarks lead to essential enhancement of the Higgs boson production cross-section at hadron colliders and the Tevatron can discover the Higgs boson before the LHC, if it mass is between 140 and 200 GeV. Then, one can handle massless Dirac neutrinos without see-saw mechanism. Concerning BSM physics, flavor democracy leads to several consequences: tan(beta) approx.eq. 40 if there are three MSSM families; super-partner of the right-handed neutrino can be the LSP; relatively light E(6)-inspired isosinglet quark etc. Finally, flavor democracy may give opportunity to handle massless composite objects within preonic models.
In $XQM$, a quark can emit Goldstone bosons. The flavor symmetry breaking in the Goldstone boson emission process is used to intepret the nucleon flavor-spin structure. In this paper, we study the inner structure of constituent quarks implied in $XQM $ caused by the Goldstone boson emission process in nucleon. From a simplified model Hamiltonian derived from $XQM$, the intrinsic wave functions of constituent quarks are determined. Then the obtained transition probabilities of the emission of Goldstone boson from a quark can give a reasonable interpretation to the flavor symmetry breaking in nucleon flavor-spin structure.
267 - Luca Vecchi 2012
We discuss flavor violation in large N Composite Higgs models. We focus on scenarios in which the masses of the standard model fermions are controlled by hierarchical mixing parameters, as in models of Partial Compositeness. We argue that a separatio n of scales between flavor and Higgs dynamics can be employed to parametrically suppress dipole and penguin operators, and thus effectively remove the experimental constraints arising from the lepton sector and the neutron EDM. The dominant source of flavor violation beyond the standard model is therefore controlled by 4-fermion operators, whose Wilson coefficients can be made compatible with data provided the Higgs dynamics approaches a walking regime in the IR. Models consistent with all flavor and electroweak data can be obtained with a new physics scale within the reach of the LHC. Explicit scenarios may be realized in a 5D framework, the new key ingredient being the introduction of flavor branes where the wave functions of the bulk fermions end.
We present an effective flavor model for the radiative generation of fermion masses and mixings based on a SU(5)xU(2) symmetry. We assume that the original source of flavor breaking resides in the supersymmetry breaking sector. Flavor violation is tr ansmitted radiatively to the fermion Yukawa couplings at low energy through finite supersymmetric threshold corrections. This model can fit the fermion mass ratios and CKM matrix elements, explain the non-observation of proton decay, and overcome present constraints on flavor changing processes through an approximate radiative alignment between the Yukawa and the soft trilinear sector. The model predicts new relations between dimensionless fermion mass ratios in the three fermion sectors, and the quark mixing angles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا