ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical nanofiber-based cavity induced by periodic air-nanohole arrays

116   0   0.0 ( 0 )
 نشر من قبل Wenfang Li
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally realized an optical nanofiber-based cavity by combining a 1-D photonic crystal and Bragg grating structures. The cavity morphology comprises a periodic, triplex air-cube introduced at the waist of the nanofiber. The cavity has been theoretically characterized using FDTD simulations to obtain the reflection and transmission spectra. We have also experimentally measured the transmission spectra and a Q-factor of ~784(87) for a very short periodic structure has been observed. The structure provides strong confinement of the cavity field and its potential for optical network integration makes it an ideal candidate for use in nanophotonic and quantum information systems.



قيم البحث

اقرأ أيضاً

Optical high-finesse cavities are a well-known mean to enhance light-matter interactions. Despite large progress in the realization of strongly coupled light-matter systems, the controlled positioning of single solid emitters in cavity modes remains a challenge. We pursue the idea to use nanofibers with sub-wavelength diameter as a substrate for such emitters. This paper addresses the question how strongly optical nanofibers influence the cavity modes. We analyze the influence of the fiber position for various fiber diameters on the finesse of the cavity and on the shape of the modes.
Periodic arrays of air nanoholes in thin metal films that support surface plasmon resonances can provide an alternative approach for boosting the light-matter interactions at the nanoscale. Indeed, nanohole arrays have garnered great interest in rece nt years for their use in biosensing, light emission enhancement and spectroscopy. However, the large-scale use of nanohole arrays in emerging technology requires new low-cost fabrication techniques. Here, we demonstrate a simple technique to fabricate nanohole arrays and examine their photonic applications. In contrast to the complicated and most commonly used electron beam lithography technique, hexagonal arrays of nanoholes are fabricated by using a simple combination of shadowing nanosphere lithography technique and electron beam deposition. These arrays are shown to offer enhancements in the lasing emission of an organic dye liquid gain medium with a quality factor above 150. Additionally, a 7-fold increase in Purcell factor is observed for CdSe quantum dot-integrated nanohole arrays.
Prospects of using metal hole arrays for the enhanced optical detection of molecular chirality in nanosize volumes are investigated. Light transmission through the holes filled with an optically active material is modeled and the activity enhancement by more than an order of magnitude is demonstrated. The spatial resolution of the chirality detection is shown to be of a few tens of nanometers. From comparing the effect in arrays of cylindrical holes and holes of complex chiral shape, it is concluded that the detection sensitivity is determined by the plasmonic near field enhancement. The intrinsic chirality of the arrays due to their shape appears to be less important.
We consider a periodic chain of oscillating dipoles, interacting via long-range dipole-dipole interactions, embedded inside a cuboid cavity waveguide. We show that the mixing between the dipolar excitations and cavity photons into polaritons can lead to the appearance of new states localized at the ends of the dipolar chain, which are reminiscent of Tamm surface states found in electronic systems. A crucial requirement for the formation of polaritonic Tamm states is that the cavity cross-section is above a critical size. Above this threshold, the degree of localization of the Tamm states is highly dependent on the cavity size, since their participation ratio scales linearly with the cavity cross-sectional area. Our findings may be important for quantum confinement effects in one-dimensional systems with strong light-matter coupling.
Singular light beams with optical vortices (OV) are often generated by means of thin binary gratings with groove bifurcation (fork holograms) that produce a set of diffracted beams with different OV charges. Usually, only single separate beams are us ed and investigated; here we consider the whole set of diffracted OV beams that, at certain conditions, are involved in efficient mutual interference to form a characteristic pattern where the ring-like structure of separate OV beams is replaced by series of bright and dark lines between adjacent diffraction orders. This pattern, well developed for high diffraction orders, reflects the main spatial properties of the diffracted beams as well as of the fork grating used for their generation. In particular, it confirms the theoretical model for the diffracted beams (Kummer beam model) and enables to determine the sign and the absolute value of the phase singularity embedded in the hologram.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا