ﻻ يوجد ملخص باللغة العربية
A measurable function $mu$ on the unit disk $mathbb{D}$ of the complex plane with $|mu|_infty<1$ is sometimes called a Beltrami coefficient. We say that $mu$ is trivial if it is the complex dilatation $f_{bar z}/f_z$ of a quasiconformal automorphism $f$ of $mathbb{D}$ satisfying the trivial boundary condition $f(z)=z,~|z|=1.$ Since it is not easy to solve the Beltrami equation explicitly, to detect triviality of a given Beltrami coefficient is a hard problem, in general. In the present article, we offer a sufficient condition for a Beltrami coefficient to be trivial. Our proof is based on Betkers theorem on Lowner chains.
An effective algorithm is presented for solving the Beltrami equation fzbar = mu fz in a planar disk. The algorithm involves no evaluation of singular integrals. The strategy, working in concentric rings, is to construct a piecewise linear mu-conform
Given a quaternionic slice regular function $f$, we give a direct and effective way to compute the coefficients of its spherical expansion at any point. Such coefficients are obtained in terms of spherical and slice derivatives of the function itself
Let $es$ be the class of analytic and univalent functions in the unit disk $|z|<1$, that have a series of the form $f(z)=z+ sum_{n=2}^{infty}a_nz^n$. Let $F$ be the inverse of the function $fines$ with the series expansion %in a disk of radius at lea
In this paper we show that the leading coefficients $mu(y,w)$ of some Kazhdan-Lusztig polynomials $P_{y,w}$ with $y,w$ in the affine Weyl group of type $widetilde{B_n}$ can be $n$; in the cases of types $widetilde{C_n}$ and $widetilde{D_n}$ they can
We define a distance function on the bordered punctured disk $0<|z|le 1/e$ in the complex plane, which is comparable with the hyperbolic distance of the punctured unit disk $0<|z|<1.$ As an application, we will construct a distance function on an $n$