ﻻ يوجد ملخص باللغة العربية
The pairing of composite fermions (CFs), electron-flux quasi-particles, is commonly proposed to explain the even-denominator fractional quantum Hall state observed at $ u=5/2$ in the first excited ($N=1$) Landau level (LL) of a two-dimensional electron system (2DES). While well-established to exist in the lowest ($N=0$) LL, much is unknown about CFs in the $N=1$ LL. Here we carry out geometric resonance measurements to detect CFs at $ u=5/2$ by subjecting the 2DES to a one-dimensional density modulation. Our data, taken at a temperature of 0.3 K, reveal no geometric resonances for CFs in the $N=1$ LL. In stark contrast, we observe clear signatures of such resonances when $ u=5/2$ is placed in the $N=0$ LL of the anti-symmetric subband by varying the 2DES width. This finding implies that the CFs mean-free-path is significantly smaller in the $N=1$ LL compared to the $N=0$ LL. Our additional data as a function of in-plane magnetic field highlight the role of subband index and establish that CFs at $ u=5/2$ in the $N=0$ LL are more anisotropic in the symmetric subband than in the anti-symmetric subband.
Hyperfine interactions between electron and nuclear spins in the quantum Hall regime provide powerful means for manipulation and detection of nuclear spins. In this work we demonstrate that significant changes in nuclear spin polarization can be crea
There is increasing experimental evidence for fractional quantum Hall effect at filling factor $ u=2+3/8$. Modeling it as a system of composite fermions, we study the problem of interacting composite fermions by a number of methods. In our variationa
We construct an action for the composite Dirac fermion consistent with symmetries of electrons projected to the lowest Landau level. First we construct a generalization of the $g=2$ electron that gives a smooth massless limit on any curved background
Using acoustic method we study dependences of transverse AC conductance, $sigma (omega)$, on magnetic field, temperature and the amplitude of AC electric field in a wide (75 nm) quantum well (QW) structure focusing on the vicinity of the filling fact
Composite fermions in fractional quantum Hall (FQH) systems are believed to form a Fermi sea of weakly interacting particles at half filling $ u=1/2$. Recently, it was proposed (D. T. Son, Phys. Rev. X 5, 031027 (2015)) that these composite fermions