ﻻ يوجد ملخص باللغة العربية
We report the experimental observation of spin-orbit torque induced switching of perpendicularly magnetized Pt/Co elements in a time resolved stroboscopic experiment based on high resolution Kerr microscopy. Magnetization dynamics is induced by injecting sub-nanosecond current pulses into the bilayer while simultaneously applying static in-plane magnetic bias fields. Highly reproducible homogeneous switching on time scales of several tens of nanoseconds is observed. Our findings can be corroborated using micromagnetic modelling only when including a field-like torque term as well as the Dzyaloshinskii-Moriya interaction mediated by finite temperature.
Deterministic magnetization switching using spin-orbit torque (SOT) has recently emerged as an efficient means to electrically control the magnetic state of ultrathin magnets. The SOT switching still lacks in oscillatory switching characteristics ove
Current-induced spin-orbit torques (SOTs) represent one of the most effective ways to manipulate the magnetization in spintronic devices. The orthogonal torque-magnetization geometry, the strong damping, and the large domain wall velocities inherent
We achieve current-induced switching in collinear insulating antiferromagnetic CoO/Pt, with fourfold in-plane magnetic anisotropy. This is measured electrically by spin Hall magnetoresistance and confirmed by the magnetic field-induced spin-flop tran
Flexible control of magnetization switching by electrical manners is crucial for applications of spin-orbitronics. Besides of a switching current that is parallel to an applied field, a bias current that is normal to the switching current is introduc
NiO is a prototypical antiferromagnet with a characteristic resonance frequency in the THz range. From atomistic spin dynamics simulations that take into account the crystallographic structure of NiO, and in particular a magnetic anisotropy respectin