ﻻ يوجد ملخص باللغة العربية
Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 $mu$m silicate feature from emission to absorption temporarily. Aims. We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results. The inner disk (r<1-3 au) spectra exhibit a 10 $mu$m absorption feature related to amorphous silicate grains. The outer disk (r>1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions. For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk.
Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the oute
Aims: We aim to use the high spatial resolution of the Atacama Large Millimeter/submillimeter Array (ALMA) to map the flow pattern of molecular gas near DG Tau and its disk, a young stellar object driving a jet and a molecular outflow. Methods: We us
Millimeter-wavelength polarization measurements offer a promising method for probing the geometry of magnetic fields in circumstellar disks. Single dish observations and theoretical work have hinted that magnetic field geometries might be predominant
By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the $H$ band with a spatial resolution of approximately 0.07$arcsec$
We present multi-epoch optical and near-infrared (NIR) photometry and spectroscopy of the spectroscopic binary T Tauri star DQ Tau. The photometric monitoring, obtained using SMARTS ANDICAM, recovers the previously-seen correlation between optical fl