ﻻ يوجد ملخص باللغة العربية
We present a method to reconstruct the complete statistical mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate that this method evaluates classical and non-classical properties using a single measurement technique and is well-suited for quantum mesoscopic state characterization. We obtain a nearly-perfect reconstruction of a field comprised of up to 10 modes based on a minimal set of assumptions. To show the utility of this method, we use it to reconstruct the mode structure of an unknown bright parametric down-conversion source.
We study the average coincidence-count signal at the output of a two-mode squeezing device with $|Nrangleotimes|alpharangle$ as the two input modes. We show that the input photon-number can be resolved from the average coincidence counts. In particul
The ability to generate light in a pure quantum state is essential for advances in optical quantum technologies. However, obtaining quantum states with control in the photon-number has remained elusive. Optical light fields with zero and one photon c
We suggest and demonstrate a scheme to reconstruct the symmetric two-mode squeezed thermal states of spectral sideband modes from an optical parametric oscillator. The method is based on a single homodyne detector and active stabilization of the cavi
Application of root density estimator to problems of statistical data analysis is demonstrated. Four sets of basis functions based on Chebyshev-Hermite, Laguerre, Kravchuk and Charlier polynomials are considered. The sets may be used for numerical an
We measure the full photon-number distribution emitted from a Bose condensate of microcavity exciton-polaritons confined in a micropillar cavity. The statistics are acquired by means of a photonnumber resolving transition edge sensor. We directly obs