ﻻ يوجد ملخص باللغة العربية
We demonstrate that, for the baseline design of the CORE satellite mission, the polarized foregrounds can be controlled at the level required to allow the detection of the primordial cosmic microwave background (CMB) $B$-mode polarization with the desired accuracy at both reionization and recombination scales, for tensor-to-scalar ratio values of ${rgtrsim 5times 10^{-3}}$. We consider detailed sky simulations based on state-of-the-art CMB observations that consist of CMB polarization with $tau=0.055$ and tensor-to-scalar values ranging from $r=10^{-2}$ to $10^{-3}$, Galactic synchrotron, and thermal dust polarization with variable spectral indices over the sky, polarized anomalous microwave emission, polarized infrared and radio sources, and gravitational lensing effects. Using both parametric and blind approaches, we perform full component separation and likelihood analysis of the simulations, allowing us to quantify both uncertainties and biases on the reconstructed primordial $B$-modes. Under the assumption of perfect control of lensing effects, CORE would measure an unbiased estimate of $r=left(5 pm 0.4right)times 10^{-3}$ after foreground cleaning. In the presence of both gravitational lensing effects and astrophysical foregrounds, the significance of the detection is lowered, with CORE achieving a $4sigma$-measurement of $r=5times 10^{-3}$ after foreground cleaning and $60$% delensing. For lower tensor-to-scalar ratios ($r=10^{-3}$) the overall uncertainty on $r$ is dominated by foreground residuals, not by the 40% residual of lensing cosmic variance. Moreover, the residual contribution of unprocessed polarized point-sources can be the dominant foreground contamination to primordial B-modes at this $r$ level, even on relatively large angular scales, $ell sim 50$. Finally, we report two sources of potential bias for the detection of the primordial $B$-modes.[abridged]
We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB an
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESAs fifth call for med
We examine the cosmological constraints that can be achieved with a galaxy cluster survey with the future CORE space mission. Using realistic simulations of the millimeter sky, produced with the latest version of the Planck Sky Model, we characterize
We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy
We describe a space-borne, multi-band, multi-beam polarimeter aiming at a precise and accurate measurement of the polarization of the Cosmic Microwave Background. The instrument is optimized to be compatible with the strict budget requirements of a m