ترغب بنشر مسار تعليمي؟ اضغط هنا

$Lambda_{c}$ Production in Au+Au Collisions at $sqrt{s_{NN}}$ = 200 GeV measured by the STAR experiment

72   0   0.0 ( 0 )
 نشر من قبل Guannan Xie
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Guannan Xie




اسأل ChatGPT حول البحث

At RHIC, enhancements in the baryon-to-meson ratio for light hadrons and hadrons containing strange quarks have been observed in central heavy-ion collisions compared to those in p+p and peripheral heavy-ion collisions in the intermediate transverse momentum ($p_T$) range (2 $<$ $p_T$ $<$ 6 GeV/$c$). This can be explained by the hadronization mechanism involving multi-parton coalescence. $Lambda_{c}$ is the lightest charmed baryon with mass close to that of $D^0$ meson, and has an extremely short life time (c$tau$$sim$60 $mu$m). Different models predict different magnitudes of enhancement in the $Lambda_{c}$/$D^0$ ratio depending on the degree to which charm quarks are thermalized in the medium and how the coalescence mechanism is implemented. In these proceedings, we report the first measurement of $Lambda_{c}$ production in heavy-ion collisions using the Heavy Flavor Tracker at STAR. The invariant yield of $Lambda_{c}$ for 3 $<$ $p_T$ $<$ 6 GeV/$c$ is measured in 10-60% central Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV. The $Lambda_{c}$/$D^0$ ratio is compared to different model calculations, and the physics implications are discussed.



قيم البحث

اقرأ أيضاً

We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair trans verse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3pm0.4({rm stat})pm0.4({rm syst})pm0.2^{rm model}$ or to $1.7pm0.3({rm stat})pm0.3({rm syst})pm0.2^{rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {sc pythia} or {sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.
We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-pr otons and anti-deuterons. We present our results in the context of coalescence models. In particular we extract the volume of homogeneity and the average phase-space density for protons and anti-protons. Near central rapidity the coalescence parameter $B_2(p_T)$ and the space averaged phase-space density $<f> (p_T)$ are very similar for both protons and anti-protons. For protons we see little variation of either $B_2(p_T)$ or the space averaged phase-space density as the rapidity increases from 0 to 3. However both these quantities depend strongly on $p_T$ at all rapidities. These results are in contrast to lower energy data where the proton and anti-proton phase-space densities are different at $y$=0 and both $B_2$ and $f$ depend strongly on rapidity.
163 - J. H. Chen 2009
We report preliminary results of hypertriton observation in heavy-ion collisions at RHIC. We have identified 157 +- 30 candidates in the current sample containing ~10^8 Au+Au events at sqrt{s_{NN}} = 200 GeV. The production rate of hypertriton is clo se to that of helium 3. No extra penalty factor is observed for hypertriton, in contrast to results observed at the AGS.
The PHENIX experiment has measured $phi$ meson production in $d$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV using the dimuon and dielectron decay channels. The $phi$ meson is measured in the forward (backward) $d$-going (Au-going) direction, $1.2<y <2.2$ ($-2.2<y<-1.2$) in the transverse-momentum ($p_T$) range from 1--7 GeV/$c$, and at midrapidity $|y|<0.35$ in the $p_T$ range below 7 GeV/$c$. The $phi$ meson invariant yields and nuclear-modification factors as a function of $p_T$, rapidity, and centrality are reported. An enhancement of $phi$ meson production is observed in the Au-going direction, while suppression is seen in the $d$-going direction, and no modification is observed at midrapidity relative to the yield in $p$$+$$p$ collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.
We report on measurements of dielectron ($e^+e^-$) production in Au$+$Au collisions at a center-of-mass energy of 200 GeV per nucleon-nucleon pair using the STAR detector at RHIC. Systematic measurements of the dielectron yield as a function of trans verse momentum ($p_{rm T}$) and collision centrality show an enhancement compared to a cocktail simulation of hadronic sources in the low invariant-mass region ($M_{ee}<$ 1 GeV/$c^2$). This enhancement cannot be reproduced by the $rho$-meson vacuum spectral function. In minimum-bias collisions, in the invariant-mass range of 0.30 $-$ 0.76 GeV/$c^2$, integrated over the full $p_{rm T}$ acceptance, the enhancement factor is 1.76 $pm$ 0.06 (stat.) $pm$ 0.26 (sys.) $pm$ 0.29 (cocktail). The enhancement factor exhibits weak centrality and $p_{rm T}$ dependence in STARs accessible kinematic regions, while the excess yield in this invariant-mass region as a function of the number of participating nucleons follows a power-law shape with a power of 1.44 $pm$ 0.10. Models that assume an in-medium broadening of the $rho$ meson spectral function consistently describe the observed excess in these measurements. Additionally, we report on measurements of $omega$ and $phi$-meson production through their $e^+e^-$ decay channel. These measurements show good agreement with Tsallis Blast-Wave model predictions as well as, in the case of the $phi$-meson, results through its $K^+K^-$ decay channel. In the intermediate invariant-mass region (1.1$<M_{ee}<$ 3 GeV/$c^2$), we investigate the spectral shapes from different collision centralities. Physics implications for possible in-medium modification of charmed hadron production and other physics sources are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا