ﻻ يوجد ملخص باللغة العربية
In a standard bifurcation of a dynamical system, the stationary points (or more generally attractors) change qualitatively when varying a control parameter. Here we describe a novel unusual effect, when the change of a parameter, e.g. a growth rate, does not influence the stationary states, but nevertheless leads to a qualitative change of dynamics. For instance, such a dynamic transition can be between the convergence to a stationary state and a strong increase without stationary states, or between the convergence to one stationary state and that to a different state. This effect is illustrated for a dynamical system describing two symbiotic populations, one of which exhibits a growth rate larger than the other one. We show that, although the stationary states of the dynamical system do not depend on the growth rates, the latter influence the boundary of the basins of attraction. This change of the basins of attraction explains this unusual effect of the quantitative change of dynamics by growth rate variation.
A question in evolutionary biology is why the number of males is approximately equal to that of females in many species, and Fishers theory of equal investment answers that it is the evolutionarily stable state. The Fisherian mechanism can be given a
We consider stochastic matrix models for population driven by random environments which form a Markov chain. The top Lyapunov exponent $a$, which describes the long-term growth rate, depends smoothly on the demographic parameters (represented as matr
Dispersal-induced growth (DIG) occurs when two populations with time-varying growth rates, each of which, when isolated, would become extinct, are able to persist and grow exponentially when dispersal among the two populations is present. This work p
Started in Wuhan, China, the COVID-19 has been spreading all over the world. We calibrate the logistic growth model, the generalized logistic growth model, the generalized Richards model and the generalized growth model to the reported number of infe
We study the coevolutionary dynamics of the diversity of phenotype expression and the evolution of cooperation in the Prisoners Dilemma game. Rather than pre-assigning zero-or-one interaction rate, we diversify the rate of interaction by associating