ﻻ يوجد ملخص باللغة العربية
The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the $A$-type (2,0) theories on $T^2$, starting from a four-dimensional $mathcal N=2$ circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: In the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D $mathcal N=2$ quiver to the half-BPS limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on $S^4$ to the (2,0) partition function on $S^4 times T^2$. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.
We propose a four-dimensional supersymmetric theory that deconstructs, in a particular limit, the six-dimensional $(2,0)$ theory of type $D_k$. This 4d theory is defined by a necklace quiver with alternating gauge nodes $mathrm{O}(2k)$ and $mathrm{Sp
We study type-B conformal anomalies associated with $frac{1}{2}$-BPS Coulomb-branch operators in 4D $mathcal N=2$ superconformal field theories. When the vacuum preserves the conformal symmetry these anomalies coincide with the two-point function coe
The 6d $mathcal{N}=(2,0)$ theory has natural surface operator observables, which are akin in many ways to Wilson loops in gauge theories. We propose a definition of a locally BPS surface operator and study its conformal anomalies, the analog of the c
We study the stress tensor multiplet four-point function in the 6d maximally supersymmetric $(2,0)$ $A_{N-1}$ and $D_N$ theories, which have no Lagrangian description, but in the large $N$ limit are holographically dual to weakly coupled M-theory on
Compactifying type $A_{N-1}$ 6d ${cal N}{=}(2,0)$ supersymmetric CFT on a product manifold $M^4timesSigma^2=M^3timestilde{S}^1times S^1times{cal I}$ either over $S^1$ or over $tilde{S}^1$ leads to maximally supersymmetric 5d gauge theories on $M^4tim