ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies on Conformal and Superconformal Extensions of the Standard Model with an Application to Gravity

71   0   0.0 ( 0 )
 نشر من قبل Antonio Costantini
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this thesis we study some theoretical and phenomenological aspects of classical conformal symmetry in specific extensions of the SM. We consider both supersymmetric and non supersymmetric cases. We discuss the perturbative structure of the superconformal anomaly effective action. We show that the manifestation of the anomaly is in the presence of massless intermediate states in correlators involving the Ferrara-Zumino supercurrent with two vector supercurrents. This universal feature is typical both of chiral and conformal anomalies. These results are used in a study of a possible extension of the SM with a dilaton, deriving some bounds on a possible conformal scale. Then we turn to investigate a specific superconformal theory, the TNMSSM, which extends the MSSM with one extra triplet and a scalar singlet superfield. The manifestation of the classical conformal symmetry in this model is in the existence of a very light pseudoscalar in the physical spectrum. We study the main proprieties of this state and its potential discovery at the LHC. In the last part of this work we discuss an application of the graviton-photon-photon vertex to gravitational lensing for a Schwarzschild background. In particular, we introduce the notion of a semiclassical lens equation for the deflection of a photon nearing the horizon of a black hole.



قيم البحث

اقرأ أيضاً

The question of whether classically conformal modifications of the standard model are consistent with experimental obervations has recently been subject to renewed interest. The method of Gildener and Weinberg provides a natural framework for the stu dy of the effective potential of the resulting multi-scalar standard model extensions. This approach relies on the assumption of the ordinary loop hierarchy $lambda_text{s} sim g^2_text{g}$ of scalar and gauge couplings. On the other hand, Andreassen, Frost and Schwartz recently argued that in the (single-scalar) standard model, gauge invariant results require the consistent scaling $lambda_text{s} sim g^4_text{g}$. In the present paper we contrast these two hierarchy assumptions and illustrate the differences in the phenomenological predictions of minimal conformal extensions of the standard model.
We investigate asymptotically safe extensions of the Standard Model with new matter fields arising in the TeV energy range. The new sector contains singlet scalars and vector-like fermions in representations which permit Yukawa interactions with the Standard Model leptons. Phenomenological implications are explored including charged lepton flavour violation, Drell-Yan processes and lepton anomalous magnetic moments. For the latter, we find that BSM contributions can be sizeable enough to explain the present experimental discrepancies of the electron and muon anomalous magnetic moments with the Standard Model.
We study one-loop quantum gravity corrections to the standard model Higgs potential $V(phi)$ $grave{rm a}$ la Coleman-Weinberg and examine the stability question of $V(phi)$ in the energy region of Planck mass scale, $musimeq M_{rm Pl}$ ($M_{rm Pl}=1 .22times10^{19}{rm GeV}$). We calculate the gravity one-loop corrections to $V(phi)$ in Einstein gravity by using the momentum cut-off $Lambda$. We have found that even small gravity corrections compete with the standard model term of $V(phi)$ and affect the stability argument of the latter part alone. This is because the latter part is nearly zero in the energy region of $M_{rm Pl}$.
126 - P. Di Vecchia 2008
In this talk we will describe the problems that one encounters when one tries to connect string theory with particle phenomenology. Then, in order to have chiral matter describing quarks and leptons, we introduce the magnetized D branes. Finally, as an explicit example of a string extension of the Standard Model, we will describe the one constructed by Ibanez, Marchesano and Rabadan.
Spontaneously broken, flavour-dependent, gauged $U(1)$ extensions of the Standard Model (SM) have many phenomenological uses. We chart the space of solutions to the gauge anomaly cancellation equations in such extensions, for both the SM chiral fermi on content and the SM plus (up to) three right-handed neutrinos (SM$ u_R$). Methods from Diophantine analysis allow us to efficiently index the solutions arithmetically, and produce the complete solution space in particular cases. In order to solve the general case, we build a computer program which cycles through possible $U(1)$ charge assignments, providing all solutions for charges up to some pre-defined maximum absolute charge. Lists of anomaly-free $U(1)$ charge assignments result, which corroborate the results of our Diophantine analysis. We make these lists, which may be queried for further desirable properties, publicly available. This previously uncharted space of anomaly-free charge assignments has been little explored until now, paving the way for future model building and phenomenological studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا