ﻻ يوجد ملخص باللغة العربية
We convert a strongly interacting ultracold Bose gas into a mixture of atoms and molecules by sweeping the interactions from resonant to weak. By analyzing the decay dynamics of the molecular gas, we show that in addition to Feshbach dimers it contains Efimov trimers. Typically around 8% of the total atomic population is bound into trimers, identified by their density-independent lifetime of about 100~$mu$s. The lifetime of the Feshbach dimers shows a density dependence due to inelastic atom-dimer collisions, in agreement with theoretical calculations. We also vary the density of the gas across a factor of 250 and investigate the corresponding atom loss rate at the interaction resonance.
We investigate a Bose-Einstein condensate in strong interaction with a single impurity particle. While this situation has received considerable interest in recent years, the regime of strong coupling remained inaccessible to most approaches due to an
We prepare a chemically and thermally one-dimensional (1d) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperatur
We analyze the two-body momentum correlation function for a uniform weakly interacting one-dimensional Bose gas. We show that the strong positive correlation between opposite momenta, expected in a Bose-Einstein condensate with a true long-range orde
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within sa
In 1970 V. Efimov predicted a puzzling quantum-mechanical effect that is still of great interest today. He found that three particles subjected to a resonant pairwise interaction can join into an infinite number of loosely bound states even though ea