ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermoelectric properties of the misfit cobaltate Ca$_3$Co$_4$O$_9$

340   0   0.0 ( 0 )
 نشر من قبل Ulrich Eckern
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The layered misfit cobaltate Ca$_3$Co$_4$O$_9$, also known as Ca$_2$CoO$_3$[CoO$_2$]$_{1.62}$, is a promising p-type thermoelectric oxide. Employing density functional theory, we study its electronic structure and determine, on the basis of Boltzmann theory within the constant-relaxation-time approximation, the thermoelectric transport coefficients. The dependence on strain and temperature is determined. In particular, we find that the $xx$-component of the thermopower is strongly enhanced, while the $yy$-component is strongly reduced, when applying 2% tensile strain. A similar anisotropy is also found in the power factor. The temperature dependence of the conductivity in the $a$-$b$ plane is found to be rather weak above 200 K, which clearly indicates that the experimentally observed transport properties are dominated by inhomogeneities arising during sample growth, i.e., are not intrinsic.



قيم البحث

اقرأ أيضاً

Properties of complex oxide thin films can be tuned over a range of values as a function of mismatch, composition, orientation, and structure. Here, we report a strategy for growing structured epitaxial thermoelectric thin films leading to improved S eebeck coefficient. Instead of using single-crystal sapphire substrates to support epitaxial growth, Ca$_3$Co$_4$O$_9$ films are deposited, using the Pulsed Laser Deposition technique, onto Al$_2$O$_3$ polycrystalline substrates textured by Spark Plasma Sintering. The structural quality of the 2000 AA thin film was investigated by Transmission Electron Microscopy, while the crystallographic orientation of the grains and the epitaxial relationships were determined by Electron Back Scatter Diffraction. The use of a polycrystalline ceramic template leads to structured films that are in good local epitaxial registry. The Seebeck coefficient is about 170 $mu$V/K at 300 K, a typical value of misfit material with low carrier density. This high-throughput process, called combinatorial substrate epitaxy, appears to facilitate the rational tuning of functional oxide films, opening a route to the epitaxial synthesis of high quality complex oxides.
356 - Abdul Ahad , K. Gautam , K. Dey 2020
[Ca$_2$CoO$_3$]$_{0.62}$[CoO$_2$], a two dimensional misfit metallic compound, is famous for its rich phases accessed by temperature, $i.e.$ high temperature spin-state transition, metal-insulator transition (MIT) at intermediate temperature ($sim$ 1 00 K) and low temperature spin density wave (SDW). It enters into SDW phase below T$_{MIT}$ which becomes long range at 27 K. Information on the independent role of misfit layers (rocksalt/Ca$_2$CoO$_3$ & triangular/CoO$_2$) in these phases is scarce. By combining a set of complementary macroscopic (DC magnetization and resistivity) and microscopic (neutron diffraction and X-ray absorption fine structure spectroscopy) measurements on pure (CCO) and Tb substituted in the rocksalt layer of CCO (CCO1), magnetic correlations in both subsystems of this misfit compound are unraveled. CCO is found to exhibit glassiness, as well as exchange bias (EB) effects, while CCO1 does not exhibit glassiness, albeit it shows weaker EB effect. By combining local structure investigations from extended X-ray absorption fine structure (EXAFS) spectroscopy and neutron diffraction results on CCO, we confirm that the SDW arises in the CoO$_2$ layer. Our results show that the magnetocrystalline anisotropy associated with the rocksalt layer acts as a source of pinning, which is responsible for EB effect. Ferromagnetic clusters in the Ca$_2$CoO$_3$ affects SDW in CoO$_2$ and ultimately glassiness arises.
485 - X. G. Luo , Y. C. Jing , H. Chen 2007
Single crystals of the Bi-Ca-Co-O system have been grown using the flux method with cooling from 900$celsius$ and 950$celsius$, respectively. The single crystals are characterized by transmission electron microscopy and X-ray diffraction. The misfit cobaltite [Ca$_2$Bi$_{1.4}$Co$_{0.6}$O$_4$]$^{RS}$[CoO$_2$]$_{1.69}$ single crystals with quadruple ($n$=4) rocksalt (RS) layer are achieved with cooling from 900$celsius$. Such crystal exhibits room-temperature thermoelectric power (TEP) of 180$mu$V/K, much larger than that in Sr-based misfit cobaltites with quadruple RS layer. However, intergrowth of single crystals of quadruple ($n$=4) and triple ($n$=3) RS-type layer-based misfit cobaltites is observed with cooling from 950$celsius$. Both of TEP and resistivity were obviously enhanced by the intergrowth compared to [Ca$_2$Bi$_{1.4}$Co$_{0.6}$O$_4$]$^{RS}$[CoO$_2$]$_{1.69}$ single crystal, while the power factor at room temperature remains unchanged.
We have examined an isovalent Rh substitution effect on the transport properties of the thermoelectric oxide Ca$_3$Co$_{4}$O$_9$ using single-crystalline form. With increasing Rh content $x$, both the electrical resistivity and the Seebeck coefficien t change systematically up to $x=0.6$ for Ca$_3$Co$_{4-x}$Rh$_{x}$O$_9$ samples. In the Fermi-liquid regime where the resistivity behaves as $rho=rho_0+AT^2$ around 120 K, the $A$ value decreases with increasing Rh content, indicating that the correlation effect is weakened by Rh $4d$ electrons with extended orbitals. We find that, in contrast to such a weak correlation effect observed in the resistivity of Rh-substituted samples, the low-temperature Seebeck coefficient is increased with increasing Rh content, which is explained with a possible enhancement of a pseudogap associated with the short-range order of spin density wave. In high-temperature range above room temperature, we show that the resistivity is largely suppressed by Rh substitution while the Seebeck coefficient becomes almost temperature-independent, leading to a significant improvement of the power factor in Rh-substituted samples. This result is also discussed in terms of the differences in the orbital size and the associated spin state between Co $3d$ and Rh $4d$ electrons.
Coupling at the interface of core/shell magnetic nanoparticles is known to be responsible for the exchange bias (EB) and the relative sizes of core and shell components are supposed to influence the associated phenomenology. In this work, we have pre pared core/shell structured nanoparticles with the total averaged diameter around $sim$ 27 nm and a wide range of shell thicknesses through the controlled oxidation of Co nanoparticles well dispersed in an amorphous silica host. Structural characterizations give compelling evidence of the formation of Co$_3$O$_4$ crystallite phase at the shells surrounding the Co core. Field cooled hysteresis loops display nonmonotonous dependence of the exchange bias $H_E$ and coercive $H_C$ fields, that become maximum for a sample with an intermediate shell thickness, at which lattice strain is also maximum for both the phases. Results of our atomistic Monte Carlo simulations of the particles with the same size and compositions as in experiments are in agreement with the experimental observations and have allowed us to identify a change in the contribution of the interfacial surface spins to the magnetization reversal giving rise to the maximum in $H_E$ and $H_C$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا