ترغب بنشر مسار تعليمي؟ اضغط هنا

Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training

80   0   0.0 ( 0 )
 نشر من قبل Rakshith Shetty
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While strong progress has been made in image captioning over the last years, machine and human captions are still quite distinct. A closer look reveals that this is due to the deficiencies in the generated word distribution, vocabulary size, and strong bias in the generators towards frequent captions. Furthermore, humans -- rightfully so -- generate multiple, diverse captions, due to the inherent ambiguity in the captioning task which is not considered in todays systems. To address these challenges, we change the training objective of the caption generator from reproducing groundtruth captions to generating a set of captions that is indistinguishable from human generated captions. Instead of handcrafting such a learning target, we employ adversarial training in combination with an approximate Gumbel sampler to implicitly match the generated distribution to the human one. While our method achieves comparable performance to the state-of-the-art in terms of the correctness of the captions, we generate a set of diverse captions, that are significantly less biased and match the word statistics better in several aspects.



قيم البحث

اقرأ أيضاً

Vision-language pre-training (VLP) on large-scale image-text pairs has achieved huge success for the cross-modal downstream tasks. The most existing pre-training methods mainly adopt a two-step training procedure, which firstly employs a pre-trained object detector to extract region-based visual features, then concatenates the image representation and text embedding as the input of Transformer to train. However, these methods face problems of using task-specific visual representation of the specific object detector for generic cross-modal understanding, and the computation inefficiency of two-stage pipeline. In this paper, we propose the first end-to-end vision-language pre-trained model for both V+L understanding and generation, namely E2E-VLP, where we build a unified Transformer framework to jointly learn visual representation, and semantic alignments between image and text. We incorporate the tasks of object detection and image captioning into pre-training with a unified Transformer encoder-decoder architecture for enhancing visual learning. An extensive set of experiments have been conducted on well-established vision-language downstream tasks to demonstrate the effectiveness of this novel VLP paradigm.
While most image captioning aims to generate objective descriptions of images, the last few years have seen work on generating visually grounded image captions which have a specific style (e.g., incorporating positive or negative sentiment). However, because the stylistic component is typically the last part of training, current models usually pay more attention to the style at the expense of accurate content description. In addition, there is a lack of variability in terms of the stylistic aspects. To address these issues, we propose an image captioning model called ATTEND-GAN which has two core components: first, an attention-based caption generator to strongly correlate different parts of an image with different parts of a caption; and second, an adversarial training mechanism to assist the caption generator to add diverse stylistic components to the generated captions. Because of these components, ATTEND-GAN can generate correlated captions as well as more human-like variability of stylistic patterns. Our system outperforms the state-of-the-art as well as a collection of our baseline models. A linguistic analysis of the generated captions demonstrates that captions generated using ATTEND-GAN have a wider range of stylistic adjectives and adjective-noun pairs.
Language instruction plays an essential role in the natural language grounded navigation tasks. However, navigators trained with limited human-annotated instructions may have difficulties in accurately capturing key information from the complicated i nstruction at different timesteps, leading to poor navigation performance. In this paper, we exploit to train a more robust navigator which is capable of dynamically extracting crucial factors from the long instruction, by using an adversarial attacking paradigm. Specifically, we propose a Dynamic Reinforced Instruction Attacker (DR-Attacker), which learns to mislead the navigator to move to the wrong target by destroying the most instructive information in instructions at different timesteps. By formulating the perturbation generation as a Markov Decision Process, DR-Attacker is optimized by the reinforcement learning algorithm to generate perturbed instructions sequentially during the navigation, according to a learnable attack score. Then, the perturbed instructions, which serve as hard samples, are used for improving the robustness of the navigator with an effective adversarial training strategy and an auxiliary self-supervised reasoning task. Experimental results on both Vision-and-Language Navigation (VLN) and Navigation from Dialog History (NDH) tasks show the superiority of our proposed method over state-of-the-art methods. Moreover, the visualization analysis shows the effectiveness of the proposed DR-Attacker, which can successfully attack crucial information in the instructions at different timesteps. Code is available at https://github.com/expectorlin/DR-Attacker.
The efficacy of external language model (LM) integration with existing end-to-end (E2E) automatic speech recognition (ASR) systems can be improved significantly using the internal language model estimation (ILME) method. In this method, the internal LM score is subtracted from the score obtained by interpolating the E2E score with the external LM score, during inference. To improve the ILME-based inference, we propose an internal LM training (ILMT) method to minimize an additional internal LM loss by updating only the E2E model components that affect the internal LM estimation. ILMT encourages the E2E model to form a standalone LM inside its existing components, without sacrificing ASR accuracy. After ILMT, the more modular E2E model with matched training and inference criteria enables a more thorough elimination of the source-domain internal LM, and therefore leads to a more effective integration of the target-domain external LM. Experimented with 30K-hour trained recurrent neural network transducer and attention-based encoder-decoder models, ILMT with ILME-based inference achieves up to 31.5% and 11.4% relative word error rate reductions from standard E2E training with Shallow Fusion on out-of-domain LibriSpeech and in-domain Microsoft production test sets, respectively.
Language is crucial for human intelligence, but what exactly is its role? We take language to be a part of a system for understanding and communicating about situations. The human ability to understand and communicate about situations emerges gradual ly from experience and depends on domain-general principles of biological neural networks: connection-based learning, distributed representation, and context-sensitive, mutual constraint satisfaction-based processing. Current artificial language processing systems rely on the same domain general principles, embodied in artificial neural networks. Indeed, recent progress in this field depends on emph{query-based attention}, which extends the ability of these systems to exploit context and has contributed to remarkable breakthroughs. Nevertheless, most current models focus exclusively on language-internal tasks, limiting their ability to perform tasks that depend on understanding situations. These systems also lack memory for the contents of prior situations outside of a fixed contextual span. We describe the organization of the brains distributed understanding system, which includes a fast learning system that addresses the memory problem. We sketch a framework for future models of understanding drawing equally on cognitive neuroscience and artificial intelligence and exploiting query-based attention. We highlight relevant current directions and consider further developments needed to fully capture human-level language understanding in a computational system.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا