ﻻ يوجد ملخص باللغة العربية
We investigate the ultraviolet (UV) behaviour of 6D N=1 supersymmetric effective (Abelian) gauge theories compactified on a two-torus ($T_2$) with magnetic flux. To this purpose we compute offshell the one-loop correction to the Wilson line state self-energy. The offshell calculation is actually necessary to capture the usual effective field theory expansion in powers of $(partial/Lambda)$. Particular care is paid to the regularization of the (divergent) momentum integrals, which is relevant for identifying the corresponding counterterm(s). We find a counterterm which is a new higher dimensional effective operator of dimension d=6, that is enhanced for a larger compactification area (where the effective theory applies) and is consistent with the symmetries of the theory. Its consequences are briefly discussed and comparison is made with orbifold compactifications without flux.
The MHV action is the Yang-Mills action quantized on the light-front, where the two explicit physical gluonic degrees of freedom have been canonically transformed to a new set of fields. This transformation leads to the action with vertices being off
In this paper we consider tree-level gauge invariant off-shell amplitudes (Wilson line form factors) in $mathcal{N}=4$ SYM. For the off-shell amplitudes with one leg off-shell we present a conjecture for their Grassmannian integral representation in
We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank-$k$ symmetric representation of the gauge group $U(N)$ for ${cal N} = 4$ super Yang-Mills. We find the holographic D3-brane descri
Intersecting D-brane models and their T-dual magnetic compactifications provide an attractive framework for particle physics, allowing for chiral fermions and supersymmetry breaking. Generically, magnetic compactifications have tachyons that are usua
We discuss the modular symmetry and zeros of zero-mode wave functions on two-dimensional torus $T^2$ and toroidal orbifolds $T^2/mathbb{Z}_N$ ($N=2,3,4,6$) with a background homogeneous magnetic field. As is well-known, magnetic flux contributes to t