ﻻ يوجد ملخص باللغة العربية
We report time and angle resolved spectroscopic measurements in optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. The spectral function is monitored as a function of temperature, photoexcitation density and delay time from the pump pulse. According to our data, the superconducting gap becomes slightly stiffer when moving off the nodal direction. The nodal quasiparticles develop a faster dynamics when pumping the superconductor with a fluence that is large enough to induce the total collapse of the gap. We discuss the observed relaxation in terms of a dynamical reformation of Cooper pairs.
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and ma
In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level $p$. In most materials, $p$ cannot be
We report tunneling spectra of near optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ intrinsic Josephson junctions with area of 0.09 $mu$m$^2$, which avoid some fundamental difficulties in the previous tunneling experiments and allow a stable temper
The effects of structural supermodulation with the period $lambda approx26$ AA along the $b$-axis of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ have been observed in photoemission studies from the early days as the presence of diffraction replicas of the int
Competition with magnetism is at the heart of high temperature superconductivity, most intensely felt near a vortex core. To investigate vortex magnetism we have developed a spatially resolved probe using nuclear magnetic resonance. Our spin-lattice-