ﻻ يوجد ملخص باللغة العربية
We study the behavior of real-normalized (RN) meromorphic differentials on Riemann surfaces under degeneration. We determine all possible limits of RN differentials in degenerating sequences of smooth curves, and describe the limit in terms of solutions of the corresponding Kirchhoff problem. We further show that the limit of zeroes of RN differentials is the set of zeroes of a twisted meromorphic RN differential, which we explicitly construct. Our main new tool is an explicit solution of the jump problem on Riemann surfaces in plumbing coordinates, by using the Cauchy kernel on the normalization of the nodal curve. Since this kernel does not depend on plumbing coordinates, we are able to approximate the RN differential on a smooth plumbed curve by a collection of meromorphic differentials on the irreducible components of a stable curve, with an explicit bound on the precision of such approximation. This allows us to also study these approximating differentials at suitable scales, so that the limit under degeneration is not identically zero. These methods can be applied more generally to study degenerations of differentials on Riemann surfaces satisfying various conditions.
Given an open subset U of a projective curve Y and a smooth family f:V-->U of curves, with semi-stable reduction over Y, we show that for a sub variation of Hodge structures of rank >2 the Arakelov inequality must be strict. For families of n-folds w
Let $C$ be a hyperelliptic curve of genus $g>1$ over an algebraically closed field $K$ of characteristic zero and $O$ one of the $(2g+2)$ Weierstrass points in $C(K)$. Let $J$ be the jacobian of $C$, which is a $g$-dimensional abelian variety over $K
We show that codimension one distributions with at most isolated singularities on certain smooth projective threefolds with Picard rank one have stable tangent sheaves. The ideas in the proof of this fact are then applied to the characterization of c
We study foliations by curves on the three-dimensional projective space with no isolated singularities, which is equivalent to assuming that the conormal sheaf is locally free. We provide a classification of such foliations by curves up to degree 3,
The paper provides a description of the sheaves of Kahler differentials of the arc space and jet schemes of an arbitrary scheme where these sheaves are computed directly from the sheaf of differentials of the given scheme. Several applications on the structure of arc spaces are presented.