ﻻ يوجد ملخص باللغة العربية
The Chern-Weil topological theory is applied to a classical formulation of general relativity in four-dimensional spacetime. Einstein--Hilbert gravitational action is shown to be invariant with respect to a novel translation (co-translation) operator up to the total derivative; thus, a topological invariant of a second Chern class exists owing to Chern-Weil theory. Using topological insight, fundamental forms can be introduced as a principal bundle of the spacetime manifold. Canonical quantization of general relativity is performed in a Heisenberg picture using the Nakanishi-Kugo-Ojima formalism in which a complete set of quantum Lagrangian and BRST transformations including auxiliary and ghost fields is provided in a self-consistent manner. An appropriate Hilbert space and physical states are introduced into the theory, and the positivity of these physical states and the unitarity of the transition matrix are ensured according to the Kugo-Ojima theorem. The nonrenormalizability of quantum gravity is reconsidered under the formulation proposed herein.
The Hamiltonian system of general relativity and its quantization without any matter or gauge fields are discussed on the basis of the symplectic geometrical theory. A symplectic geometry of classical general relativity is constructed using a general
This lecture will present a review of the past and present tests of the General Relativity theory. The essentials of the theory will be recalled and the measurable effects will be listed and analyzed. The main historical confirmations of General Rela
We present a number of open problems within general relativity. After a brief introduction to some technical mathematical issues and the famous singularity theorems, we discuss the cosmic censorship hypothesis and the Penrose inequality, the uniquene
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio
There have been many attempts to define the notion of quasilocal mass for a spacelike 2-surface in spacetime by the Hamilton-Jacobi analysis. The essential difficulty in this approach is to identify the right choice of the background configuration to