ترغب بنشر مسار تعليمي؟ اضغط هنا

Nakanishi-Kugo-Ojima quantization of general relativity in Heisenberg picture

70   0   0.0 ( 0 )
 نشر من قبل Yoshimasa Kurihara
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Chern-Weil topological theory is applied to a classical formulation of general relativity in four-dimensional spacetime. Einstein--Hilbert gravitational action is shown to be invariant with respect to a novel translation (co-translation) operator up to the total derivative; thus, a topological invariant of a second Chern class exists owing to Chern-Weil theory. Using topological insight, fundamental forms can be introduced as a principal bundle of the spacetime manifold. Canonical quantization of general relativity is performed in a Heisenberg picture using the Nakanishi-Kugo-Ojima formalism in which a complete set of quantum Lagrangian and BRST transformations including auxiliary and ghost fields is provided in a self-consistent manner. An appropriate Hilbert space and physical states are introduced into the theory, and the positivity of these physical states and the unitarity of the transition matrix are ensured according to the Kugo-Ojima theorem. The nonrenormalizability of quantum gravity is reconsidered under the formulation proposed herein.



قيم البحث

اقرأ أيضاً

106 - Yoshimasa Kurihara 2020
The Hamiltonian system of general relativity and its quantization without any matter or gauge fields are discussed on the basis of the symplectic geometrical theory. A symplectic geometry of classical general relativity is constructed using a general ized phase space for pure gravity. Prequantization of the symplectic manifold is performed according to the standard procedure of geometrical quantization. Quantum vacuum solutions are chosen from among the classical solutions under the Einstein-Brillouin-Keller quantization condition. A topological correction of quantum solutions, namely the Maslov index, is realized using a prequantization bundle. In addition, a possible mass spectrum of Schwarzschild black holes is discussed.
183 - Angelo Tartaglia 2015
This lecture will present a review of the past and present tests of the General Relativity theory. The essentials of the theory will be recalled and the measurable effects will be listed and analyzed. The main historical confirmations of General Rela tivity will be described. Then, the present situation will be reviewed presenting a number of examples. The opportunities given by astrophysical and astrometric observations will be shortly discussed. Coming to terrestrial experiments the attention will be specially focused on ringlasers and a dedicated experiment for the Gran Sasso Laboratories, named by the acronym GINGER, will be presented. Mention will also be made of alternatives to the use of light, such as particle beams and superfluid rings.
265 - Alan A. Coley 2018
We present a number of open problems within general relativity. After a brief introduction to some technical mathematical issues and the famous singularity theorems, we discuss the cosmic censorship hypothesis and the Penrose inequality, the uniquene ss of black hole solutions and the stability of Kerr spacetime and the final state conjecture, critical phenomena and the Einstein-Yang--Mills equations, and a number of other problems in classical general relativity. We then broaden the scope and discuss some mathematical problems motivated by quantum gravity, including AdS/CFT correspondence and problems in higher dimensions and, in particular, the instability of anti-de Sitter spacetime, and in cosmology, including the cosmological constant problem and dark energy, the stability of de Sitter spacetime and cosmological singularities and spikes. Finally, we briefly discuss some problems in numerical relativity and relativistic astrophysics.
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio n, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio $gtrsim 180-240$, with the precise value depending on the dimension of the GR waveform family used in data analysis.
There have been many attempts to define the notion of quasilocal mass for a spacelike 2-surface in spacetime by the Hamilton-Jacobi analysis. The essential difficulty in this approach is to identify the right choice of the background configuration to be subtracted from the physical Hamiltonian. Quasilocal mass should be nonnegative for surfaces in general spacetime and zero for surfaces in flat spacetime. In this letter, we propose a new definition of gauge-independent quasilocal mass and prove that it has the desired properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا