ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic rays, gas and dust in nearby anticentre clouds : I -- CO-to-H2 conversion factors and dust opacities

110   0   0.0 ( 0 )
 نشر من قبل Quentin Remy
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to explore the capabilities of dust emission and rays for probing the properties of the interstellar medium in the nearby anti-centre region, using gamma-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, X$_{CO}$ , in different environments. We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in HI 21-cm and $^{12}$CO 2.6-mm line emission. We have jointly modelled the gamma-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth at 353 GHz as a combination of HI-bright, CO-bright, and ionised gas components. The complementary information from dust emission and gamma rays was used to reveal the gas not seen, or poorly traced, by HI , free-free, and $^{12}$CO emissions, namely (i) the opaque HI and diffuse H$_2$ present in the Dark Neutral Medium at the atomic-molecular transition, and (ii) the dense H$_2$ to be added where $^{12}$CO lines saturate. The measured interstellar gamma-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds. We find a gradual increase in grain opacity as the gas becomes more dense. The increase reaches a factor of four to six in the cold molecular regions that are well shielded from stellar radiation. Consequently, the X$_{CO}$ factor derived from dust is systematically larger by 30% to 130% than the gamma-ray estimate. We also evaluate the average gamma-ray X$_{CO}$ factorfor each cloud, and find that X$_{CO}$ tends to decrease from diffuse to more compact molecular clouds, as expected from theory.



قيم البحث

اقرأ أيضاً

We have explored the capabilities of dust extinction and $gamma$ rays to probe the properties of the interstellar medium in the nearby anti-centre region. We have jointly modelled the $gamma$-ray intensity and the stellar reddening, E(B-V) as a combi nation of H$_{rm I}$-bright, CO-bright, and ionised gas components. The complementary information from dust reddening and $gamma$ rays is used to reveal the dark gas not seen, or poorly traced, by H$_{rm I}$, free-free, and $^{12}$CO emissions. We compare the total gas column densities, $N_{rm{H}}$, derived from the $gamma$ rays and stellar reddening with those inferred from a similar analysis (Remy et al. 2017) of $gamma$ rays and of the optical depth of the thermal dust emission, $tau_{353}$, at 353 GHz. We can therefore compare environmental variations in specific dust reddening, E(B-V)/$N_{rm H}$, and in dust emission opacity (dust optical depth per gas nucleon), $tau_{353}/N_{rm{H}}$. Over the whole anti-centre region, we find an average E(B-V)/$N_{rm H}$ ratio of $(2.02pm0.48)times$ $10^{-22}$~mag~cm$^2$, with maximum local variations of about $pm30%$ at variance with the two to six fold coincident increase seen in emission opacity as the gas column density increases. In the diffuse medium, the small variations in specific reddening, E(B-V)/$N_{rm H}$ implies a rather uniform dust-to-gas mass ratio in the diffuse parts of the anti-centre clouds. The small amplitude of the E(B-V)/$N_{rm H}$ variations with increasing $N_{rm{H}}$ column density confirms that the large opacity $tau_{353}/N_{rm{H}}$ rise seen toward dense CO clouds is primarily due to changes in dust emissivity. The environmental changes are qualitatively compatible with model predictions based on mantle accretion on the grains and the formation of grain aggregates.
We present kiloparsec (kpc) spatial resolution maps of the CO-to-H2 conversion factor (alpha_co) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for alpha_co and DGR by assuming that the DGR is approxima tely constant on kpc scales. With this assumption, we can combine maps of dust mass surface density, CO integrated intensity and HI column density to solve for both alpha_co and DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high resolution far-IR maps from the Herschel key program KINGFISH, 12CO J=(2-1) maps from the IRAM 30m large program HERACLES and HI 21-cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our alpha_co results on the more typically used 12CO J=(1-0) scale and show using literature measurements that variations in the line ratio do not effect our results. In total, we derive 782 individual solutions for alpha_co and DGR. On average, alpha_co = 3.1 Msun pc^-2 (K km s^-1)^-1 for our sample with a standard deviation of 0.3 dex. Within galaxies we observe a generally flat profile of alpha_co as a function of galactocentric radius. However, most galaxies exhibit a lower alpha_co in the central kpc---a factor of ~2 below the galaxy mean, on average. In some cases, the central alpha_co value can be factors of 5 to 10 below the standard Milky Way (MW) value of alpha_co,MW =4.4 Msun pc^-2 (K km s^-1)^-1. While for alpha_co we find only weak correlations with metallicity, DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate alpha_co for studies of nearby galaxies.
Deep Herschel imaging and 12CO(2-1) line luminosities from the IRAM PdBI are combined for a sample of 17 galaxies at z>1 from the GOODS-N field. The sample includes galaxies both on and above the main sequence (MS) traced by star-forming galaxies in the SFR-M* plane. The far-infrared data are used to derive dust masses, Mdust. Combined with an empirical prescription for the dependence of the gas-to-dust ratio on metallicity (GDR), the CO luminosities and Mdust values are used to derive for each galaxy the CO-to-H2 conversion factor, alpha_co. Like in the local Universe, the value of alpha_co is a factor of ~5 smaller in starbursts compared to normal star-forming galaxies (SFGs). We also uncover a relation between alpha_co and dust temperature (Tdust; alpha_co decreasing with increasing Tdust) as obtained from modified blackbody fits to the far-infrared data. While the absolute normalization of the alpha_co(Tdust) relation is uncertain, the global trend is robust against possible systematic biases in the determination of Mdust, GDR or metallicity. Although we cannot formally distinguish between a step and a smooth evolution of alpha_co with the dust temperature, we can conclude that in galaxies of near-solar metallicity, a critical value of Tdust=30K can be used to determine whether the appropriate alpha_co is closer to the starburst value (1.0 Msun(K kms pc^2)^-1, if Tdust>30K) or closer to the Galactic value (4.35 Msun (K kms pc^2)^-1, if Tdust<30K). This indicator has the great advantage of being less subjective than visual morphological classifications of mergers/SFGs, which can be difficult at high z because of the clumpy nature of SFGs. In the absence of far-infrared data, the offset of a galaxy from the main sequence (i.e., log[SSFR(galaxy)/SSFR_MS(M*,z)]) can be used to identify galaxies requiring the use of an alpha_co conversion factor lower than the Galactic value.
430 - P. Woitke , M. Min , C. Pinte 2015
We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavele ngths. We propose new standard dust opacities for disk models, we present a simplified treatment of PAHs sufficient to reproduce the PAH emission features, and we suggest using a simple treatment of dust settling. We roughly adjust parameters to obtain a model that predicts typical Class II T Tauri star continuum and line observations. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63um, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties (large grains) often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models. We propose to use line observations of robust chemical tracers of the gas, such as O, CO, and H2, as additional constraints to determine some key properties of the disks, such as disk shape and mass, opacities, and the dust/gas ratio, by simultaneously fitting continuum and line observations.
Aims: Mapping the interstellar medium in 3D provides a wealth of insights into its inner working. The Milky Way is the only galaxy for which detailed 3D mapping can be achieved in principle. In this paper, we reconstruct the dust density in and aroun d the local super-bubble. Methods: The combined data from surveys such as Gaia, 2MASS, PANSTARRS, and ALLWISE provide the necessary information to make detailed maps of the interstellar medium in our surrounding. To this end, we used variational inference and Gaussian processes to model the dust extinction density, exploiting its intrinsic correlations. Results: We reconstructed a highly resolved dust map, showing the nearest dust clouds at a distance of up to 400pc with a resolution of 1pc. Conclusions: Our reconstruction provides insights into the structure of the interstellar medium. We compute summary statistics of the spectral index and the 1-point function of the logarithmic dust extinction density, which may constrain simulations of the interstellar medium that achieve a similar resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا