ﻻ يوجد ملخص باللغة العربية
We study operator insertions into the $1/2$ BPS Wilson loop in ${cal N}=4$ SYM theory and determine their two-point coefficients, anomalous dimensions and structure constants. The calculation is done for the first few lowest dimension insertions and relies on known results for the expectation value of a smooth Wilson loop. In addition to the particular coefficients that we calculate, our study elucidates the connection between deformations of the line and operator insertions and between the vacuum expectation value of the line and the CFT data of the insertions.
We study three-point functions of operators on the $1/2$ BPS Wilson loop in planar $mathcal{N}=4$ super Yang-Mills theory. The operators we consider are defect changing operators, which change the scalar coupled to the Wilson loop. We first perform t
We study Euclidean Wilson loops at strong coupling using the AdS/CFT correspondence, where the problem is mapped to finding the area of minimal surfaces in Hyperbolic space. We use a formalism introduced recently by Kruczenski to perturbatively compu
The finite remainder function for planar, color-ordered, maximally helicity violating scattering processes in N=4 super Yang-Mills theory possesses a non-vanishing multi-Regge limit that depends on the choice of a Mandelstam region. We analyze the co
We perform exact computations of correlation functions of 1/2-BPS local operators and protected operator insertions on the 1/8-BPS Wilson loop in $mathcal{N}=4$ SYM. This generalizes the results of our previous paper arXiv:1802.05201, which employs s
We consider $alpha$ corrections to the one-loop four-point correlator of the stress-tensor multiplet in $mathcal{N}=4$ super Yang-Mills at order $1/N^4$. Holographically, this is dual to string corrections of the one-loop supergravity amplitude on Ad