Nuclear particle production from peripheral to central events is presented. N/Z gradient between projectile and target is studied using the fact that two reactions have the same projectile+target N/Z and so the same neutron to proton ratio for the combined system. Inclusive data study in the forward part of the center of mass indicates that N/Z equilibration between the projectile-like and the target-like is achieved for central collisions. Particles are also produced from mid-rapidity region. 3He mean pre-equilibrium character is evidenced and 6He production at mid-rapidity implies a neutron enrichment phenomenon of the projectile target interacting zone.
Experimental kinetic energy distributions and small-angle two-particle correlation functions involving deuterons and tritons are compared for 36Ar+ 112,124Sn collisions at E/A = 61 MeV (i.e. for systems similar in size, but with different isospin con
tent). A larger triton yield is observed from the more neutron-rich system, as predicted by IBUU simulations, while the emission times of the light clusters are found to be the same for the two Sn-target systems. For both systems, the time sequence tau_{d} < tau_{p} < tau_{t}, is deduced for charged particles emitted from the intermediate velocity source.
The vector analyzing power has been measured for the elastic scattering of neutron-rich 6He from polarized protons at 71 MeV/nucleon making use of a newly constructed solid polarized proton target operated in a low magnetic field and at high temperat
ure. Two approaches based on local one-body potentials were applied to investigate the spin-orbit interaction between a proton and a 6He nucleus. An optical model analysis revealed that the spin-orbit potential for 6He is characterized by a shallow and long-ranged shape compared with the global systematics of stable nuclei. A semimicroscopic analysis with a alpha+n+n cluster folding model suggests that the interaction between a proton and the alpha core is essentially important in describing the p+6He elastic scattering. The data are also compared with fully microscopic analyses using non-local optical potentials based on nucleon-nucleon g-matrices.
The production of $omega$ mesons in the $pd to{}^3$He$ omega$ reaction has been studied at two energies near the kinematic threshold, $T_p=1450$ MeV and $T_p=1360$ MeV. The differential cross section was measured as a function of the $omega$ cm angle
at both energies over the whole angular range. Whereas the results at 1360 MeV are consistent with isotropy, strong rises are observed near both the forward and backward directions at 1450 MeV. Calculations made using a two-step model with an intermediate pion fail to reproduce the shapes of the measured angular distributions and also underestimate the total cross sections.
Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed usi
ng two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.
The proportionality between differential cross sections at vanishing linear momentum transfer and Gamow-Teller transition strength, expressed in terms of the textit{unit cross section} ($hat{sigma}_{GT}$) was studied as a function of target mass numb
er for ($t$,$^{3}$He) and ($^{3}$He,$t$) reactions at 115 $A$MeV and 140 $A$MeV, respectively. Existing ($^{3}$He,$t$) and ($t$,$^{3}$He) data on targets with mass number $12leq Aleq 120$ were complemented with new and reevaluated ($t$,$^{3}$He) data on proton, deuteron, $^{6}$Li and $^{12}$C targets. It was found that in spite of the small difference in beam energies between the two probes, the unit cross sections have a nearly identical and simple dependence on target mass number $A$, for $Ageq 12$: $hat{sigma}_{GT}=109/A^{0.65}$. The factorization of the unit cross sections in terms of a kinematical factor, a distortion factor and the strength of the effective spin-isospin transfer nucleus-nucleus interaction was investigated. Simple phenomenological functions depending on mass number $A$ were extracted for the latter two. By comparison with plane and distorted-wave Born approximation calculations, it was found that the use of a short-range approximation for knock-on exchange contributions to the transition amplitude results in overestimated cross sections for reactions involving the composite ($^{3}$He,$t$) and ($t$,$^{3}$He) probes.