ﻻ يوجد ملخص باللغة العربية
In the near future, cosmology will enter the wide and deep galaxy survey area allowing high-precision studies of the large scale structure of the universe in three dimensions. To test cosmological models and determine their parameters accurately, it is natural to confront data with exact theoretical expectations expressed in the observational parameter space (angles and redshift). The data-driven galaxy number count fluctuations on redshift shells, can be used to build correlation functions $C(theta; z_1, z_2)$ on and between shells which can probe the baryonic acoustic oscillations, the distance-redshift distortions as well as gravitational lensing and other relativistic effects. Transforming the model to the data space usually requires the computation of the angular power spectrum $C_ell(z_1, z_2)$ but this appears as an artificial and inefficient step plagued by apodization issues. In this article we show that it is not necessary and present a compact expression for $C(theta; z_1, z_2)$ that includes directly the leading density and redshift space distortions terms from the full linear theory. It can be evaluated using a fast integration method based on Clenshaw-Curtis quadrature and Chebyshev polynomial series. This new method to compute the correlation functions without any Limber approximation, allows us to produce and discuss maps of the correlation function directly in the observable space and is a significant step towards disentangling the data from the tested models.
The analysis of Redshift-Space Distortions (RSD) within galaxy surveys provides constraints on the amplitude of peculiar velocities induced by structure growth, thereby allowing tests of General Relativity on extremely large scales. The next generati
Future high spectroscopic resolution galaxy surveys will observe galaxies with nearly full-sky footprints. Modeling the galaxy clustering for these surveys, therefore, must include the wide-angle effect with narrow redshift binning. In particular, wh
Observations of galaxy clustering are made in redshift space, which results in distortions to the underlying isotropic distribution of galaxies. These redshift-space distortions (RSD) not only degrade important features of the matter density field, s
Redshift space distortions (RSD) in the void-galaxy correlation $xi^s$ provide information on the linear growth rate of structure in low density environments. Accurate modelling of these RSD effects can also allow the use of voids in competitive Alco
We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function of voids and haloes in redshift space, both directly and in Fourier form. In linear theory, this cross-correlation contains only monopo