ﻻ يوجد ملخص باللغة العربية
We report the discovery by the intermediate Palomar Transient Factory (iPTF) of a candidate tidal disruption event (TDE) iPTF16axa at $z=0.108$, and present its broadband photometric and spectroscopic evolution from 3 months of follow-up observations with ground-based telescopes and Swift. The light curve is well fitted with a $t^{-5/3}$ decay, and we constrain the rise-time to peak to be $<$49 rest-frame days after disruption, which is roughly consistent with the fallback timescale expected for the $sim 5times$10$^{6}$ $M_odot$ black hole inferred from the stellar velocity dispersion of the host galaxy. The UV and optical spectral energy distribution (SED) is well described by a constant blackbody temperature of T$sim$ 3$times$10$^4$ K over the monitoring period, with an observed peak luminosity of 1.1$times$10$^{44}$ erg s$^{-1}$. The optical spectra are characterized by a strong blue continuum and broad HeII and H$alpha$ lines characteristic of TDEs. We compare the photometric and spectroscopic signatures of iPTF16axa with 11 TDE candidates in the literature with well-sampled optical light curves. Based on a single-temperature fit to the optical and near-UV photometry, most of these TDE candidates have peak luminosities confined between log(L [erg s$^{-1}$]) = 43.4-44.4, with constant temperatures of a few $times 10^{4}$ K during their power-law declines, implying blackbody radii on the order of ten times the tidal disruption radius, that decrease monotonically with time. For TDE candidates with hydrogen and helium emission, the high helium-to-hydrogen ratios suggest that the emission arises from high-density gas, where nebular arguments break down. We find no correlation between the peak luminosity and the black hole mass, contrary to the expectations for TDEs to have $dot{M} propto M_{rm BH}^{-1/2}$.
The existence of optical-ultraviolet Tidal Disruption Events (TDEs) could be considered surprising because their electromagnetic output was originally predicted to be dominated by X-ray emission from an accretion disk. Yet over the last decade, the g
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probin
The tidal disruption and subsequent accretion of a star by a supermassive black hole can be used as a laboratory to study the physics of relativistic jets. The ngVLA is the only planned instrument that can both discover and characterize a large numbe
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs.
Numerical simulations have historically played a major role in understanding the hydrodynamics of the tidal disruption process. Given the complexity of the geometry of the system, the challenges posed by the problem have indeed stimulated much work o