ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural stability and mechanism of compression of stoichiometric B13C2 up to 68 GPa

248   0   0.0 ( 0 )
 نشر من قبل Natalia Dubrovinskaia
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Boron carbide is a ceramic material with unique properties widely used in numerous, including armor, applications. Its mechanical properties, mechanism of compression, and limits of stability are of both scientific and practical value. Here, we report the behavior of the stoichiometric boron carbide B13C2 studied on single crystals up to 68 GPa. As revealed by synchrotron X-ray diffraction, B13C2 maintains its crystal structure and does not undergo phase transitions. Accurate measurements of the unit cell and B12 icosahedra volumes as a function of pressure led to conclusion that they reduce similarly upon compression that is typical for covalently bonded solids. A comparison of the compressional behavior of B13C2 with that of alpha-B, gamma-B, and B4C showed that it is determined by the types of bonding involved in the course of compression. Neither molecular-like nor inversed-molecular-like solid behavior upon compression was detected that closes a long-standing scientific dispute.



قيم البحث

اقرأ أيضاً

Recently a new group of two dimensional (2D) materials, originating from the group V elements (pnictogens), has gained global attention owing to their outstanding properties.
We report a study of the structural phase transitions induced by pressure in bulk black phosphorus by using both synchrotron x-ray diffraction for pressures up to 12.2 GPa and Raman spectroscopy up to 18.2 GPa. Very recently black phosphorus attracte d large attention because of the unique properties of fewlayers samples (phosphorene), but some basic questions are still open in the case of the bulk system. As concerning the presence of a Raman spectrum above 10 GPa, which should not be observed in an elemental simple cubic system, we propose a new explanation by attributing a key role to the non-hydrostatic conditions occurring in Raman experiments. Finally, a combined analysis of Raman and XRD data allowed us to obtain quantitative information on presence and extent of coexistences between different structural phases from ~5 up to ~15 GPa. This information can have an important role in theoretical studies on pressure-induced structural and electronic phase transitions in black phosphorus.
We report ab initio calculations of the melting curve and Hugoniot of molybdenum for the pressure range 0-400 GPa, using density functional theory (DFT) in the projector augmented wave (PAW) implementation. We use the ``reference coexistence techniqu e to overcome uncertainties inherent in earlier DFT calculations of the melting curve of Mo. Our calculated melting curve agrees well with experiment at ambient pressure and is consistent with shock data at high pressure, but does not agree with the high pressure melting curve from static compression experiments. Our calculated P(V) and T(P) Hugoniot relations agree well with shock measurements. We use calculations of phonon dispersion relations as a function of pressure to eliminate some possible interpretations of the solid-solid phase transition observed in shock experiments on Mo.
The room-temperature longitudinal piezoresistance of n-type and p-type crystalline silicon along selected crystal axes is investigated under uniaxial compressive stresses up to 3 GPa. While the conductance ($G$) of n-type silicon eventually saturates at $approx 45%$ of its zero-stress value ($G_0$) in accordance with the charge transfer model, in p-type material $G/G_0$ increases above a predicted limit of $approx 4.5$ without any significant saturation, even at 3 GPa. Calculation of $G/G_0$ using textit{ab-initio} density functional theory reveals that neither $G$ nor the mobility, when properly averaged over the hole distribution, saturate at stresses lower than 3 GPa. The lack of saturation has important consequences for strained silicon technologies.
In this work, we investigate calcium titanate (CaTiO3 - CTO) using X-ray diffraction and Raman spectroscopy up to 60 and 55 GPa respectively. Both experiments show that the orthorhombic Pnma structure remains stable up to the highest pressures measur ed, in contradiction to ab-initio predictions. A fit of the compression data with a second-order Birch-Murnaghan equation of state yields a bulk modulus K0 of 181.0(6) GPa. The orthorhombic distortion is found to increase slightly with pressure, in agreement with previous experiments at lower pressures and the general rules for the evolution of perovskites under pressure. High-pressure polarized Raman spectra also enable us to clarify the Raman mode assignment of CTO and identify the modes corresponding to rigid rotation of the octahedra, A-cation shifts and Ti-O bond stretching. The Raman signature is then discussed in terms of compression mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا