ترغب بنشر مسار تعليمي؟ اضغط هنا

A remark on Mishchenko-Fomenko algebras and regular sequences

47   0   0.0 ( 0 )
 نشر من قبل Anne Moreau
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Anne Moreau




اسأل ChatGPT حول البحث

In this note, we show that the free generators of the Mishchenko-Fomenko subalgebra of a complex reductive Lie algebra, constructed by the argument shift method at a regular element, form a regular sequence. This result was proven by Serge Ovsienko in the type A at a regular and semisimple element. Our approach is very different, and is strongly based on geometric properties of the nilpotent bicone.



قيم البحث

اقرأ أيضاً

Recently a remarkable map between 4-dimensional superconformal field theories and vertex algebras has been constructed cite{BLLPRV15}. This has lead to new insights in the theory of characters of vertex algebras. In particular it was observed that in some cases these characters decompose in nice products cite{XYY16}, cite{Y16}. The purpose of this note is to explain the latter phenomena. Namely, we point out that it is immediate by our character formula cite{KW88}, cite{KW89} that in the case of a textit{boundary level} the characters of admissible representations of affine Kac-Moody algebras and the corresponding $W$-algebras decompose in products in terms of the Jacobi form $ vartheta_{11}(tau, z)$.
The $n$-slice algebra is introduced as a generalization of path algebra in higher dimensional representation theory. In this paper, we give a classification of $n$-slice algebras via their $(n+1)$-preprojective algebras and the trivial extensions of their quadratic duals. One can always relate tame $n$-slice algebras to the McKay quiver of a finite subgroup of $mathrm{GL}(n+1, mathbb C)$. In the case of $n=2$, we describe the relations for the $2$-slice algebras related to the McKay quiver of finite Abelian subgroups of $mathrm{SL}(3, mathbb C)$ and of the finite subgroups obtained from embedding $mathrm{SL}(2, mathbb C)$ into $mathrm{SL}(3,mathbb C)$.
We give simple and unified proofs of the known stability and rigidity results for Lie algebras, Lie subalgebras and Lie algebra homomorphisms. Moreover, we investigate when a Lie algebra homomorphism is stable under all automorphisms of the codomain (including outer automorphisms).
143 - Kori Tosiaki 2020
We give a definition of quaternion Lie algebra and of the quaternification of a complex Lie algebra. By our definition gl(n,H), sl(n,H), so*(2n) ans sp(n) are quaternifications of gl(n,C), sl(n,C), so(n,C) and u(n) respectively. Then we shall prove t hat a simple Lie algebra admits the quaternification. For the proof we follow the well known argument due to Harich-Chandra, Chevalley and Serre to construct the simple Lie algebra from its corresponding root system. The root space decomposition of this quaternion Lie algebra will be given. Each root sapce of a fundamental root is complex 2-dimensional.
In this paper we investigate relations between Koopman, groupoid and quasi-regular representations of countable groups. We show that for an ergodic measure class preserving action of a countable group G on a standard Borel space the associated groupo id and quasi-regular representations are weakly equivalent and weakly contained in the Koopman representation. Moreover, if the action is hyperfinite then the Koopman representation is weakly equivalent to the groupoid. As a corollary of our results we obtain a continuum of pairwise disjoint pairwise equivalent irreducible representations of weakly branch groups. As an illustration we calculate spectra of regular, Koopman and groupoid representations associated to the action of the 2-group of intermediate growth constructed by the second author in 1980.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا