ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Synthetic Data to Train Neural Networks is Model-Based Reasoning

223   0   0.0 ( 0 )
 نشر من قبل Atilim Gunes Baydin
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We draw a formal connection between using synthetic training data to optimize neural network parameters and approximate, Bayesian, model-based reasoning. In particular, training a neural network using synthetic data can be viewed as learning a proposal distribution generator for approximate inference in the synthetic-data generative model. We demonstrate this connection in a recognition task where we develop a novel Captcha-breaking architecture and train it using synthetic data, demonstrating both state-of-the-art performance and a way of computing task-specific posterior uncertainty. Using a neural network trained this way, we also demonstrate successful breaking of real-world Captchas currently used by Facebook and Wikipedia. Reasoning from these empirical results and drawing connections with Bayesian modeling, we discuss the robustness of synthetic data results and suggest important considerations for ensuring good neural network generalization when training with synthetic data.



قيم البحث

اقرأ أيضاً

Calibrating neural networks is of utmost importance when employing them in safety-critical applications where the downstream decision making depends on the predicted probabilities. Measuring calibration error amounts to comparing two empirical distri butions. In this work, we introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test in which the main idea is to compare the respective cumulative probability distributions. From this, by approximating the empirical cumulative distribution using a differentiable function via splines, we obtain a recalibration function, which maps the network outputs to actual (calibrated) class assignment probabilities. The spine-fitting is performed using a held-out calibration set and the obtained recalibration function is evaluated on an unseen test set. We tested our method against existing calibration approaches on various image classification datasets and our spline-based recalibration approach consistently outperforms existing methods on KS error as well as other commonly used calibration measures.
Miscalibration - a mismatch between a models confidence and its correctness - of Deep Neural Networks (DNNs) makes their predictions hard to rely on. Ideally, we want networks to be accurate, calibrated and confident. We show that, as opposed to the standard cross-entropy loss, focal loss [Lin et. al., 2017] allows us to learn models that are already very well calibrated. When combined with temperature scaling, whilst preserving accuracy, it yields state-of-the-art calibrated models. We provide a thorough analysis of the factors causing miscalibration, and use the insights we glean from this to justify the empirically excellent performance of focal loss. To facilitate the use of focal loss in practice, we also provide a principled approach to automatically select the hyperparameter involved in the loss function. We perform extensive experiments on a variety of computer vision and NLP datasets, and with a wide variety of network architectures, and show that our approach achieves state-of-the-art calibration without compromising on accuracy in almost all cases. Code is available at https://github.com/torrvision/focal_calibration.
When a camera is pointed at a strong light source, the resulting photograph may contain lens flare artifacts. Flares appear in a wide variety of patterns (halos, streaks, color bleeding, haze, etc.) and this diversity in appearance makes flare remova l challenging. Existing analytical solutions make strong assumptions about the artifacts geometry or brightness, and therefore only work well on a small subset of flares. Machine learning techniques have shown success in removing other types of artifacts, like reflections, but have not been widely applied to flare removal due to the lack of training data. To solve this problem, we explicitly model the optical causes of flare either empirically or using wave optics, and generate semi-synthetic pairs of flare-corrupted and clean images. This enables us to train neural networks to remove lens flare for the first time. Experiments show our data synthesis approach is critical for accurate flare removal, and that models trained with our technique generalize well to real lens flares across different scenes, lighting conditions, and cameras.
Effectively combining logic reasoning and probabilistic inference has been a long-standing goal of machine learning: the former has the ability to generalize with small training data, while the latter provides a principled framework for dealing with noisy data. However, existing methods for combining the best of both worlds are typically computationally intensive. In this paper, we focus on Markov Logic Networks and explore the use of graph neural networks (GNNs) for representing probabilistic logic inference. It is revealed from our analysis that the representation power of GNN alone is not enough for such a task. We instead propose a more expressive variant, called ExpressGNN, which can perform effective probabilistic logic inference while being able to scale to a large number of entities. We demonstrate by several benchmark datasets that ExpressGNN has the potential to advance probabilistic logic reasoning to the next stage.
Deep neural networks achieve state-of-the-art performance in a variety of tasks by extracting a rich set of features from unstructured data, however this performance is closely tied to model size. Modern techniques for inducing sparsity and reducing model size are (1) network pruning, (2) training with a sparsity inducing penalty, and (3) training a binary mask jointly with the weights of the network. We study different sparsity inducing penalties from the perspective of Bayesian hierarchical models and present a novel penalty called Hierarchical Adaptive Lasso (HALO) which learns to adaptively sparsify weights of a given network via trainable parameters. When used to train over-parametrized networks, our penalty yields small subnetworks with high accuracy without fine-tuning. Empirically, on image recognition tasks, we find that HALO is able to learn highly sparse network (only 5% of the parameters) with significant gains in performance over state-of-the-art magnitude pruning methods at the same level of sparsity. Code is available at https://github.com/skyler120/sparsity-halo.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا