ﻻ يوجد ملخص باللغة العربية
The quantum Liouville equation, which describes the phase space dynamics of a quantum system of fermions, is analyzed from statistical point of view as a particular example of the Kramers-Moyal expansion. Quantum mechanics is extended to the relativistic domain by generalizing the Wigner-Moyal equation. Thus, an expression is derived for the relativistic mass in the Wigner quantum phase space presentation. The diffusion with an imaginary diffusion coefficient is also discussed. An imaginary stochastic process is proposed as the origin of quantum mechanics.
We argue that Anton Zeilingers foundational conceptual principle for quantum mechanics according to which an elementary system carries one bit of information is an idealistic principle, which should be replaced by a realistic principle of contextuali
We discuss an article by Steven Weinberg expressing his discontent with the usual ways to understand quantum mechanics. We examine the two solutions that he considers and criticizes and propose another one, which he does not discuss, the pilot wave t
Relational Quantum Mechanics (RQM) is a non-standard interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve t
We present a derivation of the third postulate of Relational Quantum Mechanics (RQM) from the properties of conditional probabilities.The first two RQM postulates are based on the information that can be extracted from interaction of different system
Two-photon states produce enough symmetry needed for Diracs construction of the two-oscillator system which produces the Lie algebra for the O(3,2) space-time symmetry. This O(3,2) group can be contracted to the inhomogeneous Lorentz group which, acc