ﻻ يوجد ملخص باللغة العربية
The geometric approach to optimal transport and information theory has triggered the interpretation of probability densities as an infinite-dimensional Riemannian manifold. The most studied Riemannian structures are Ottos metric, yielding the $L^2$-Wasserstein distance of optimal mass transport, and the Fisher--Rao metric, predominant in the theory of information geometry. On the space of smooth probability densities, none of these Riemannian metrics are geodesically complete---a property desirable for example in imaging applications. That is, the existence interval for solutions to the geodesic flow equations cannot be extended to the whole real line. Here we study a class of Hamilton--Jacobi-like partial differential equations arising as geodesic flow equations for higher-order Sobolev type metrics on the space of smooth probability densities. We give order conditions for global existence and uniqueness, thereby providing geodesic completeness. The system we study is an interesting example of a flow equation with loss of derivatives, which is well-posed in the smooth category, yet non-parabolic and fully non-linear. On a more general note, the paper establishes a link between geometric analysis on the space of probability densities and analysis of Euler-Arnold equations in topological hydrodynamics.
For free boundary problems on Euclidean spaces, the monotonicity formulas of Alt-Caffarelli-Friedman and Caffarelli-Jerison-Kenig are cornerstones for the regularity theory as well as the existence theory. In this article we establish the analogs of
In this paper we provide some local and global splitting results on complete Riemannian manifolds with nonnegative Ricci curvature. We achieve the splitting through the analysis of some pointwise inequalities of Modica type which hold true for every
We study Riemannian metrics on Lie groupoids in the relative setting. We show that any split fibration between proper groupoids can be made Riemannian, and we use these metrics to linearize proper groupoid fibrations. As an application, we derive rig
Normal geodesic flows flows of Carnot-Caratheodory are discussed from the point of view of the theory of Hamiltonian systems. The geodesic flows corresponding to left-invariant metrics and left- and -right-invariant rank 2 distributions on the three-
We prove an existence result for the Poisson equation on non-compact Riemannian manifolds satisfying weighted Poincare inequalities outside compact sets. Our result applies to a large class of manifolds including, for instance, all non-parabolic mani