ﻻ يوجد ملخص باللغة العربية
Infrared (IR) blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency selective structures on silicon and a thin (50 $mu textrm{m}$ thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects $sim$50% of the incoming light and blocks textgreater 99.8% of the total power with negligible thermal gradients and excellent low frequency transmission. This allows for a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1%, and the in-band absorption of the powder mix is below 1% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements.
Broadband refractive optics realized from high index materials provide compelling design solutions for the next generation of observatories for the Cosmic Microwave Background (CMB), and for sub-millimeter astronomy. In this paper, work is presented
Ground-based millimeter and sub-millimeter telescopes are attempting to image the sky with ever-larger cryogenically-cooled bolometer arrays, but face challenges in mitigating the infrared loading accompanying large apertures. Absorptive infrared fil
The quasi-optical modulation of linear polarization at millimeter and sub-millimeter wavelengths can be achieved by using rotating half wave plates (HWPs) in front of polarization sensitive detectors. Large operational bandwidths are required when th
Large imaging arrays of detectors at millimeter and submillimeter wavelengths have applications that include measurements of the faint polarization signal in the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are developing pla
The next generations of ground-based cosmic microwave background experiments will require polarisation sensitive, multichroic pixels of large focal planes comprising several thousand detectors operating at the photon noise limit. One approach to achi