ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact Diffusion for Distributed Optimization and Learning --- Part II: Convergence Analysis

115   0   0.0 ( 0 )
 نشر من قبل Kun Yuan
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Part I of this work [2] developed the exact diffusion algorithm to remove the bias that is characteristic of distributed solutions for deterministic optimization problems. The algorithm was shown to be applicable to a larger set of combination policies than earlier approaches in the literature. In particular, the combination matrices are not required to be doubly stochastic, which impose stringent conditions on the graph topology and communications protocol. In this Part II, we examine the convergence and stability properties of exact diffusion in some detail and establish its linear convergence rate. We also show that it has a wider stability range than the EXTRA consensus solution, meaning that it is stable for a wider range of step-sizes and can, therefore, attain faster convergence rates. Analytical examples and numerical simulations illustrate the theoretical findings.



قيم البحث

اقرأ أيضاً

This work develops a distributed optimization strategy with guaranteed exact convergence for a broad class of left-stochastic combination policies. The resulting exact diffusion strategy is shown in Part II to have a wider stability range and superio r convergence performance than the EXTRA strategy. The exact diffusion solution is applicable to non-symmetric left-stochastic combination matrices, while many earlier developments on exact consensus implementations are limited to doubly-stochastic matrices; these latter matrices impose stringent constraints on the network topology. The derivation of the exact diffusion strategy in this work relies on reformulating the aggregate optimization problem as a penalized problem and resorting to a diagonally-weighted incremental construction. Detailed stability and convergence analyses are pursued in Part II and are facilitated by examining the evolution of the error dynamics in a transformed domain. Numerical simulations illustrate the theoretical conclusions.
Dual decomposition is widely utilized in distributed optimization of multi-agent systems. In practice, the dual decomposition algorithm is desired to admit an asynchronous implementation due to imperfect communication, such as time delay and packet d rop. In addition, computational errors also exist when individual agents solve their own subproblems. In this paper, we analyze the convergence of the dual decomposition algorithm in distributed optimization when both the asynchrony in communication and the inexactness in solving subproblems exist. We find that the interaction between asynchrony and inexactness slows down the convergence rate from $mathcal{O} ( 1 / k )$ to $mathcal{O} ( 1 / sqrt{k} )$. Specifically, with a constant step size, the value of objective function converges to a neighborhood of the optimal value, and the solution converges to a neighborhood of the exact optimal solution. Moreover, the violation of the constraints diminishes in $mathcal{O} ( 1 / sqrt{k} )$. Our result generalizes and unifies the existing ones that only consider either asynchrony or inexactness. Finally, numerical simulations validate the theoretical results.
Information compression is essential to reduce communication cost in distributed optimization over peer-to-peer networks. This paper proposes a communication-efficient linearly convergent distributed (COLD) algorithm to solve strongly convex optimiza tion problems. By compressing innovation vectors, which are the differences between decision vectors and their estimates, COLD is able to achieve linear convergence for a class of $delta$-contracted compressors. We explicitly quantify how the compression affects the convergence rate and show that COLD matches the same rate of its uncompressed version. To accommodate a wider class of compressors that includes the binary quantizer, we further design a novel dynamical scaling mechanism and obtain the linearly convergent Dyna-COLD. Importantly, our results strictly improve existing results for the quantized consensus problem. Numerical experiments demonstrate the advantages of both algorithms under different compressors.
In this work, we revisit a classical incremental implementation of the primal-descent dual-ascent gradient method used for the solution of equality constrained optimization problems. We provide a short proof that establishes the linear (exponential) convergence of the algorithm for smooth strongly-convex cost functions and study its relation to the non-incremental implementation. We also study the effect of the augmented Lagrangian penalty term on the performance of distributed optimization algorithms for the minimization of aggregate cost functions over multi-agent networks.
73 - Ran Xin , Usman A. Khan , 2020
In this paper, we study decentralized online stochastic non-convex optimization over a network of nodes. Integrating a technique called gradient tracking in decentralized stochastic gradient descent, we show that the resulting algorithm, GT-DSGD, enj oys certain desirable characteristics towards minimizing a sum of smooth non-convex functions. In particular, for general smooth non-convex functions, we establish non-asymptotic characterizations of GT-DSGD and derive the conditions under which it achieves network-independent performances that match the centralized minibatch SGD. In contrast, the existing results suggest that GT-DSGD is always network-dependent and is therefore strictly worse than the centralized minibatch SGD. When the global non-convex function additionally satisfies the Polyak-Lojasiewics (PL) condition, we establish the linear convergence of GT-DSGD up to a steady-state error with appropriate constant step-sizes. Moreover, under stochastic approximation step-sizes, we establish, for the first time, the optimal global sublinear convergence rate on almost every sample path, in addition to the asymptotically optimal sublinear rate in expectation. Since strongly convex functions are a special case of the functions satisfying the PL condition, our results are not only immediately applicable but also improve the currently known best convergence rates and their dependence on problem parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا