ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Mod-2 Cohomology of SL 3 (z[ 1 2 , i])

127   0   0.0 ( 0 )
 نشر من قبل Hans-Werner Henn
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Hans-Werner Henn




اسأل ChatGPT حول البحث

Let $Gamma$ = SL 3 (Z[ 1 2 , i]), let X be any mod-2 acyclic $Gamma$-CW complex on which $Gamma$ acts with finite stabilizers and let Xs be the 2-singular locus of X. We calculate the mod-2 cohomology of the Borel constructon of Xs with respect to the action of $Gamma$. This cohomology coincides with the mod-2 cohomology of $Gamma$ in cohomological degrees bigger than 8 and the result is compatible with a conjecture of Quillen which predicts the strucure of the cohomology ring H * ($Gamma$; Z/2).



قيم البحث

اقرأ أيضاً

We study the mod-p cohomology of the group Out(F_n) of outer automorphisms of the free group F_n in the case n=2(p-1) which is the smallest n for which the p-rank of this group is 2. For p=3 we give a complete computation, at least above the virtual cohomological dimension of Out(F_4) (which is 5). More precisley, we calculate the equivariant cohomology of the p-singular part of outer space for p=3. For a general prime p>3 we give a recursive description in terms of the mod-p cohomology of Aut(F_k) for k less or equal to p-1. In this case we use the Out(F_{2(p-1)})-equivariant cohomology of the poset of elementary abelian p-subgroups of Out(F_n).
231 - Shizuo Kaji 2021
We determine the mod $2$ cohomology over the Steenrod algebra of the classifying spaces of the free loop groups $LG$ for compact groups $G=Spin(7)$, $Spin(8)$, $Spin(9)$, and $F_4$. Then, we show that they are isomorphic as algebras over the Steenrod algebra to the mod $2$ cohomology of the corresponding Chevalley groups of type $G(q)$, where $q$ is an odd prime power. In a similar manner, we compute the cohomology of the free loop space over $BDI(4)$ and show that it is isomorphic to that of $BSol(q)$ as algebras over the Steenrod algebra.
The equivariant cohomology of the classical configuration space $F(mathbb{R}^d,n)$ has been been of great interest and has been studied intensively starting with the classical papers by Artin (1925/1947) on the theory of braids, by Fox and Neuwirth ( 1962), Fadell and Neuwirth (1962), and Arnold (1969). We give a brief treatment of the subject from the beginnings to recent developments. However, we focus on the mod 2 equivariant cohomology algebras of the classical configuration space $F(mathbb{R}^d,n)$, as described in an influential paper by Hung (1990). We show with a new, detailed proof that his main result is correct, but that the arguments that were given by Hung on the way to his result are not, as are some of the intermediate results in his paper. This invalidates a paper by three of the present authors, Blagojevic, Luck & Ziegler (2016), who used a claimed intermediate result from Hung (1990) in order to derive lower bounds for the existence of $k$-regular and $ell$-skew embeddings. Using our new proof for Hungs main result, we get new lower bounds for existence of highly regular embeddings: Some of them agree with the previously claimed bounds, some are weaker.
The $ER(2)$-cohomology of $Bmathbb{Z}/(2^q)$ and $mathbb{C}P^n$ are computed along with the Atiyah-Hirzebruch spectral sequence for $ER(2)^*(mathbb{C}P^infty)$. This, along with other papers in this series, gives us the $ER(2)$-cohomology of all Eile nberg-MacLane spaces. Since $ER(2)$ is $TMF_0(3)$ after a suitable completion, these computations also take care of that theory.
The main purpose of this paper is calculation of differential invariants which arise from prolonged actions of two Lie groups SL(2) and SL(3) on the $n$th jet space of $R^2$. It is necessary to calculate $n$th prolonged infenitesimal generators of the action.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا