ﻻ يوجد ملخص باللغة العربية
The dependence of the surface plasmons resonance (SPR) frequency on the size of gold nanoparticles (GNPs) is experimentally studied. The measured data for the SPR frequency by UV-Vis spectroscopy and GNPs diameter by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM) are collected in the course of classical citrate GNPs synthesis. The relationship between the GNPs size and the blue shift of the light absorption is presented. They are fitted by an equation with a single free parameter, the dielectric permittivity of the surrounding media. Thus, the refractive index of the surrounding media is determined, which characterizes the GNPs surface shell.
Superlubricity, or alternatively termed structural (super)lubrictiy, is a concept where ultra-low friction is expected at the interface between sliding surfaces if these surfaces are incommensurate and thus unable to interlock. In this work, we now r
We propose a new approach to understand the time-dependent temperature increasing process of gold-silica core-shell nanoparticles injected into chicken tissues under near-infrared laser irradiation. Gold nanoshells strongly absorb near-infrared radia
We have investigated in detail the growth dynamics of gold nanorods with various aspect ratios in different surrounding environments. Surprisingly, a blue shift in the temporal evolution of colloidal gold nanorods in aqueous medium has been observed
We present theoretical calculations for the absorption properties of protein-coated gold nanoparticles on graphene and graphite substrates. As the substrate is far away from nanoparticles, numerical results show that the number of protein bovine seru
In the context of magnetic hyperthermia, several physical parameters are used to optimize the heat generation and these include the nanoparticles concentration and the magnitude and frequency of the external AC magnetic field. Here we extend our prev